A Point Cloud-Based Method for Automatic Groove Detection and Trajectory Generation of Robotic Arc Welding Tasks

Rui Peng, D. Navarro-Alarcon, Victor Wu, Wen Yang
{"title":"A Point Cloud-Based Method for Automatic Groove Detection and Trajectory Generation of Robotic Arc Welding Tasks","authors":"Rui Peng, D. Navarro-Alarcon, Victor Wu, Wen Yang","doi":"10.1109/UR49135.2020.9144861","DOIUrl":null,"url":null,"abstract":"In this paper, in order to pursue high-efficiency robotic arc welding tasks, we propose a method based on point cloud acquired by an RGB-D sensor. The method consists of two parts: welding groove detection and 3D welding trajectory generation. The actual welding scene could be displayed in 3D point cloud format. Focusing on the geometric feature of the welding groove, the detection algorithm is capable of adapting well to different welding workpieces with a V-type welding groove. Meanwhile, a 3D welding trajectory involving 6-DOF poses of the welding groove for robotic manipulator motion is generated. With an acceptable error in trajectory generation, the robotic manipulator could drive the welding torch to follow the trajectory and execute welding tasks. In this paper, details of the integrated robotic system are also presented. Experimental results prove application value of the presented welding robotic system.","PeriodicalId":360208,"journal":{"name":"2020 17th International Conference on Ubiquitous Robots (UR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UR49135.2020.9144861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, in order to pursue high-efficiency robotic arc welding tasks, we propose a method based on point cloud acquired by an RGB-D sensor. The method consists of two parts: welding groove detection and 3D welding trajectory generation. The actual welding scene could be displayed in 3D point cloud format. Focusing on the geometric feature of the welding groove, the detection algorithm is capable of adapting well to different welding workpieces with a V-type welding groove. Meanwhile, a 3D welding trajectory involving 6-DOF poses of the welding groove for robotic manipulator motion is generated. With an acceptable error in trajectory generation, the robotic manipulator could drive the welding torch to follow the trajectory and execute welding tasks. In this paper, details of the integrated robotic system are also presented. Experimental results prove application value of the presented welding robotic system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于点云的机器人弧焊自动坡口检测与轨迹生成方法
为了实现机器人弧焊任务的高效率,本文提出了一种基于RGB-D传感器采集点云的方法。该方法包括两个部分:焊接坡口检测和三维焊接轨迹生成。实际焊接场景可采用三维点云格式显示。针对焊接坡口的几何特征,该检测算法能够很好地适应带有v型焊接坡口的不同焊接工件。同时,生成了包含焊接坡口六自由度位姿的机器人机械手运动三维焊接轨迹。在轨迹生成误差可接受的情况下,机器人可以驱动焊枪沿轨迹运动,完成焊接任务。本文还详细介绍了集成机器人系统。实验结果证明了该焊接机器人系统的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy Improvement of Fisheye Stereo Camera by Combining Multiple Disparity Offset Maps Cloud Services for Culture Aware Conversation: Socially Assistive Robots and Virtual Assistants Robotic Path Planning for Inspection of Complex-Shaped Objects Prediction of expected Angle of knee joint of human lower limbs based on leg interaction A CNN-LSTM Hybrid Model for Ankle Joint Motion Recognition Method Based on sEMG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1