M. Ryzhii, V. Ryzhii, T. Otsuji, V. Mitin, M. Shur
{"title":"Current Driven Plasma Instability in Graphene-FETs with Coulomb Electron Drag","authors":"M. Ryzhii, V. Ryzhii, T. Otsuji, V. Mitin, M. Shur","doi":"10.1109/comcas52219.2021.9628999","DOIUrl":null,"url":null,"abstract":"We show that the ballistic electron injection from the n+ source region through the i-region into the gated n-region of the n+-i-n-n+ graphene field-effect transistor (GFET) leads to the effective drag of quasi-equilibrium electrons toward the drain. The drag results in the positive feedback between the ballistic injection and the reverse injection from the n+ drain region and can lead to the negative real part of the GFET source-drain impedance accompanied with the change of the impedance imaginary part sign. As a result, the steady-state current flow along the GFET channel can be unstable giving rise to the current driven self-excitation of the electron density high-frequency oscillations (plasma instability). The related oscillations of the current feeding an antenna can be used for the terahertz radiation emission.","PeriodicalId":354885,"journal":{"name":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/comcas52219.2021.9628999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We show that the ballistic electron injection from the n+ source region through the i-region into the gated n-region of the n+-i-n-n+ graphene field-effect transistor (GFET) leads to the effective drag of quasi-equilibrium electrons toward the drain. The drag results in the positive feedback between the ballistic injection and the reverse injection from the n+ drain region and can lead to the negative real part of the GFET source-drain impedance accompanied with the change of the impedance imaginary part sign. As a result, the steady-state current flow along the GFET channel can be unstable giving rise to the current driven self-excitation of the electron density high-frequency oscillations (plasma instability). The related oscillations of the current feeding an antenna can be used for the terahertz radiation emission.