Prediction of Total Body Water using Scaled Conjugate Gradient Artificial Neural Network

Marife A. Rosales, Maria Gemel B. Palconit, A. Bandala, R. R. Vicerra, E. Dadios, Hilario A. Calinao
{"title":"Prediction of Total Body Water using Scaled Conjugate Gradient Artificial Neural Network","authors":"Marife A. Rosales, Maria Gemel B. Palconit, A. Bandala, R. R. Vicerra, E. Dadios, Hilario A. Calinao","doi":"10.1109/TENCON50793.2020.9293804","DOIUrl":null,"url":null,"abstract":"The study aims to design an intelligent total body water measuring device which will help to determine the total body water level or percentage of an individual using ultrasonic sensor, load cell and bioelectric impedance analysis (BIA). The system utilized the Scaled Conjugate Gradient Artificial Neural Network (ANN) as the machine learning algorithm. The system used the dataset splitting of 70%-15%15% for training, validation and testing. Different hidden neurons were used and compared during neural network training and found out that using 10 neurons will provide the lowest mean square error (MSE) with best value of Pearson’s correlation (R). Based on the results, using 10 neurons, Scaled Conjugate Gradient algorithm has better performance as compared to Levenberg-Marquardt algorithm with MSE equal to 0.180033, 0.118954, 0.529157 while the R value is equal to 0.997887, 0.997488, 0.99644 for training, validation and testing.","PeriodicalId":283131,"journal":{"name":"2020 IEEE REGION 10 CONFERENCE (TENCON)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE REGION 10 CONFERENCE (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON50793.2020.9293804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The study aims to design an intelligent total body water measuring device which will help to determine the total body water level or percentage of an individual using ultrasonic sensor, load cell and bioelectric impedance analysis (BIA). The system utilized the Scaled Conjugate Gradient Artificial Neural Network (ANN) as the machine learning algorithm. The system used the dataset splitting of 70%-15%15% for training, validation and testing. Different hidden neurons were used and compared during neural network training and found out that using 10 neurons will provide the lowest mean square error (MSE) with best value of Pearson’s correlation (R). Based on the results, using 10 neurons, Scaled Conjugate Gradient algorithm has better performance as compared to Levenberg-Marquardt algorithm with MSE equal to 0.180033, 0.118954, 0.529157 while the R value is equal to 0.997887, 0.997488, 0.99644 for training, validation and testing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于尺度共轭梯度人工神经网络的水体总水量预测
本研究旨在设计一种智能全身水分测量装置,利用超声波传感器、称重传感器和生物电阻抗分析(BIA)来确定个人的全身水位或百分比。该系统采用缩放共轭梯度人工神经网络(ANN)作为机器学习算法。系统采用70%-15%的数据集分割率进行训练、验证和测试。在神经网络训练过程中,使用不同的隐藏神经元进行对比,发现使用10个神经元可以获得最小的均方误差(MSE)和最佳的Pearson’s correlation (R)值。基于结果,使用10个神经元的Scaled Conjugate Gradient算法比Levenberg-Marquardt算法(MSE分别为0.180033、0.118954、0.529157,R值分别为0.997887、0.997488、0.99644)在训练、验证和测试中表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-Intrusive Diabetes Pre-diagnosis using Fingerprint Analysis with Multilayer Perceptron Smart Defect Detection and Sortation through Image Processing for Corn Short-term Unit Commitment Using Advanced Direct Load Control Leukemia Detection Mechanism through Microscopic Image and ML Techniques German Sign Language Translation using 3D Hand Pose Estimation and Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1