Listen to Your Footsteps: Wearable Device for Measuring Walking Quality

Sungjae Hwang, Junghyeon Gim
{"title":"Listen to Your Footsteps: Wearable Device for Measuring Walking Quality","authors":"Sungjae Hwang, Junghyeon Gim","doi":"10.1145/2702613.2732734","DOIUrl":null,"url":null,"abstract":"In this paper, we present a low-cost context-aware technique for determining a user's walking quality. This is achieved by filtering and analyzing the acoustic signal generated when users walk. To extract the acoustic values of footsteps, we implemented a simple wearable device attached on the user's ankle. To verify our approach, we conducted a preliminary test using several pattern classification algorithms. The results show that our system achieves an 89.6% average for three different walking styles (best, good, and bad) and 86.9% for four different real-world ground sets (carpet, asphalt, sand, and wood). We believe that our technique can be applied to existing context-aware techniques as well as various unexplored domains in wearable devices.","PeriodicalId":142786,"journal":{"name":"Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2702613.2732734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we present a low-cost context-aware technique for determining a user's walking quality. This is achieved by filtering and analyzing the acoustic signal generated when users walk. To extract the acoustic values of footsteps, we implemented a simple wearable device attached on the user's ankle. To verify our approach, we conducted a preliminary test using several pattern classification algorithms. The results show that our system achieves an 89.6% average for three different walking styles (best, good, and bad) and 86.9% for four different real-world ground sets (carpet, asphalt, sand, and wood). We believe that our technique can be applied to existing context-aware techniques as well as various unexplored domains in wearable devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
倾听你的脚步声:测量步行质量的可穿戴设备
在本文中,我们提出了一种低成本的上下文感知技术来确定用户的行走质量。这是通过过滤和分析用户行走时产生的声音信号来实现的。为了提取脚步声的声学值,我们在用户的脚踝上安装了一个简单的可穿戴设备。为了验证我们的方法,我们使用几种模式分类算法进行了初步测试。结果表明,我们的系统在三种不同的行走方式(最佳、良好和糟糕)上达到了89.6%的平均水平,在四种不同的现实世界地面(地毯、沥青、沙子和木头)上达到了86.9%的平均水平。我们相信我们的技术可以应用于现有的环境感知技术以及可穿戴设备中各种尚未探索的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PicLight: User-Centered Lighting Control Interface for Residential Space Sketching User Experiences: The Hands-on Course Utilizing the Effects of Priming to Facilitate Text Comprehension Reimagining Digital Fabrication as Performance Art User Eye Fatigue Detection via Eye Movement Behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1