Iris Segmentation Approach Based on Adaptive Threshold Value and Circular Hough Transform

Jwad Ali Ridha, J. H. Saud
{"title":"Iris Segmentation Approach Based on Adaptive Threshold Value and Circular Hough Transform","authors":"Jwad Ali Ridha, J. H. Saud","doi":"10.1109/CSASE48920.2020.9142123","DOIUrl":null,"url":null,"abstract":"Researchers have proposed several approaches to provide processing methodologies for iris images captured in unconstrained mediums to leverage the level of accuracy for iris recognition systems. Segmentation is the most critical stage which considered a challenging area to researchers. In this paper, we propose an iris segmentation approach to handle the problem of low contrast iris images, in which the iris boundary is undetected. It uses the pupil boundary to define a search space for automatically finding an appropriate threshold value to extract the iris region, and then uses the thresholded image to create binary edge map with strong iris edge. Circular Hough Transform (CHT) is adopted to localize pupil/iris boundaries, and Rubber Sheet Model (RSM) of lower half of iris is used in normalization stage to eliminate upper eyelashes and eyelid. Contrast-Limited Adaptive Histogram Equalization (CLAHE) technique is adopted to overcome the low contrast problem of iris image. Finally, a region of interest without the impact of lower eyelashes and eyelid is selected to obtain noise free iris template. The proposed approach is tested on CASIA Iris Image Dataset Version 2.0.","PeriodicalId":254581,"journal":{"name":"2020 International Conference on Computer Science and Software Engineering (CSASE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computer Science and Software Engineering (CSASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSASE48920.2020.9142123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Researchers have proposed several approaches to provide processing methodologies for iris images captured in unconstrained mediums to leverage the level of accuracy for iris recognition systems. Segmentation is the most critical stage which considered a challenging area to researchers. In this paper, we propose an iris segmentation approach to handle the problem of low contrast iris images, in which the iris boundary is undetected. It uses the pupil boundary to define a search space for automatically finding an appropriate threshold value to extract the iris region, and then uses the thresholded image to create binary edge map with strong iris edge. Circular Hough Transform (CHT) is adopted to localize pupil/iris boundaries, and Rubber Sheet Model (RSM) of lower half of iris is used in normalization stage to eliminate upper eyelashes and eyelid. Contrast-Limited Adaptive Histogram Equalization (CLAHE) technique is adopted to overcome the low contrast problem of iris image. Finally, a region of interest without the impact of lower eyelashes and eyelid is selected to obtain noise free iris template. The proposed approach is tested on CASIA Iris Image Dataset Version 2.0.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应阈值和圆霍夫变换的虹膜分割方法
研究人员已经提出了几种方法来提供在无约束介质中捕获的虹膜图像的处理方法,以利用虹膜识别系统的准确性水平。分割是最关键的阶段,也是研究人员最具挑战性的领域。本文提出了一种虹膜分割方法来解决虹膜边界无法检测的低对比度虹膜图像问题。利用瞳孔边界定义搜索空间,自动寻找合适的阈值提取虹膜区域,然后利用阈值图像生成具有强虹膜边缘的二值边缘图。采用圆形霍夫变换(CHT)对瞳孔/虹膜边界进行定位,在归一化阶段采用虹膜下半部分的橡胶片模型(RSM)消除上睫毛和眼睑。采用对比度限制自适应直方图均衡化(CLAHE)技术克服虹膜图像对比度低的问题。最后,选取一个不受下睫毛和眼睑影响的感兴趣区域,得到无噪声虹膜模板。该方法在CASIA虹膜图像数据集2.0上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IoT Based Water Tank Level Control System Using PLC Performance Evaluation of Dual Polarization Coherent Detection Optical for Next Generation of UWOC Systems An Automated Vertebrate Animals Classification Using Deep Convolution Neural Networks CSASE 2020 Keynote Speakers-1 A Secure Mechanism to Prevent ARP Spoofing and ARP Broadcasting in SDN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1