Computational Fluid Dynamics (CFD) for Modelling Multiphase Flow in Hilly-Terrain Pipelines

O. Olabode, G. Egeonu, R. Afolabi, C. Onuh, C. Okonji
{"title":"Computational Fluid Dynamics (CFD) for Modelling Multiphase Flow in Hilly-Terrain Pipelines","authors":"O. Olabode, G. Egeonu, R. Afolabi, C. Onuh, C. Okonji","doi":"10.4028/www.scientific.net/DF.28.33","DOIUrl":null,"url":null,"abstract":"The design and operation of subsea pipelines over the life-cycle of an asset is vital for continuous oil and gas production. Qualitative design and effective production operation of pipelines depend on fluid type(s) involved in the flow; and in the case of multiphase flow, the need to understand the behaviour of the fluids becomes more imperative. This work presented in this report is borne out of the need for more accurate ways of predicting multiphase flow parameters in subsea pipelines with hilly-terrain profiles by better understanding their flow behaviors. To this end, Computational Fluid Dynamics has been used as against existing experimental and mechanistic methods which have inherent shortcomings. The results showed that multiphase flow parameters including flow-regimes, liquid hold-up and pressure drop in hilly-terrain pipelines can be modelled without associated errors in existing techniques. Similarity in trend was found when results of pressure gradient in downward-incline pipe were compared with results from existing correlations and mechanistic method. CFD can be used as a design tool and also a research tool into the understanding of the complexities of multiphase flow in hilly-terrain pipelines towards qualitative design and effective operation of hilly-terrain pipelines.","PeriodicalId":311581,"journal":{"name":"Diffusion Foundations","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diffusion Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/DF.28.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The design and operation of subsea pipelines over the life-cycle of an asset is vital for continuous oil and gas production. Qualitative design and effective production operation of pipelines depend on fluid type(s) involved in the flow; and in the case of multiphase flow, the need to understand the behaviour of the fluids becomes more imperative. This work presented in this report is borne out of the need for more accurate ways of predicting multiphase flow parameters in subsea pipelines with hilly-terrain profiles by better understanding their flow behaviors. To this end, Computational Fluid Dynamics has been used as against existing experimental and mechanistic methods which have inherent shortcomings. The results showed that multiphase flow parameters including flow-regimes, liquid hold-up and pressure drop in hilly-terrain pipelines can be modelled without associated errors in existing techniques. Similarity in trend was found when results of pressure gradient in downward-incline pipe were compared with results from existing correlations and mechanistic method. CFD can be used as a design tool and also a research tool into the understanding of the complexities of multiphase flow in hilly-terrain pipelines towards qualitative design and effective operation of hilly-terrain pipelines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算流体力学(CFD)在丘陵地形管道中模拟多相流
海底管道在资产生命周期内的设计和运行对于油气的持续生产至关重要。管道的定性设计和有效生产操作取决于流动中涉及的流体类型;在多相流的情况下,理解流体行为的需要变得更加迫切。本报告中提出的这项工作是为了更好地了解丘陵地形海底管道的流动行为,从而更准确地预测其多相流参数。为此目的,计算流体力学已被用于对抗现有的实验和机械方法,这些方法具有固有的缺点。结果表明,包括流型、液持率和压降在内的多相流参数可以在现有技术中无相关误差地建模。将已有的相关方法和力学方法的压力梯度计算结果进行比较,发现了趋势上的相似性。CFD既可以作为一种设计工具,也可以作为一种研究工具,深入了解丘陵地形管道中多相流的复杂性,从而实现丘陵地形管道的定性设计和有效运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Kinetics and Thermodynamics of Fe-X (X= Al, Cr, Mn, Ti, B, and C) Melts under High Pressure Fundamental Core Effects in Transition Metal High-Entropy Alloys: “High-Entropy” and “Sluggish Diffusion” Effects Novel Interdiffusion Analysis in Multicomponent Alloys - Part 1: Application to Ternary Alloys Techniques of Tracer Diffusion Measurements in Metals, Alloys and Compounds History and People of Solid-State Diffusion – An Overview
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1