New Features Extraction Method for People Recognition on the Basis of the Iris Pattern

R. Szewczyk
{"title":"New Features Extraction Method for People Recognition on the Basis of the Iris Pattern","authors":"R. Szewczyk","doi":"10.1109/MIXDES.2007.4286242","DOIUrl":null,"url":null,"abstract":"Biometric people recognition methods are increasingly popular, yet there is no biometric authentication standard used in everyday life. Despite a lot of work on biometric people recognition methods, especially those based on the iris pattern, which is the subject of the author's research, there is still room for designing a new, optimal method, e.g. one that would be simpler in computation, have a shorter iris signature and good distinctiveness. In the paper the author proposes some iris database analyses (e.g. spatial entropy and average image analyses) in order to find input images parameters helpful for designing an iris recognition method. Then, a new iris features extractor based on reverse biorthogonal wavelet rbio3.1 is proposed, which is simple in computation, has a shorter iris signature (340 bits) and quite good discriminative power (d'=6.3, EER=0,6%) in comparison with Daugman's method used as reference. For experiments the UBIRIS database of 2105 images of 241 persons was chosen.","PeriodicalId":310187,"journal":{"name":"2007 14th International Conference on Mixed Design of Integrated Circuits and Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 14th International Conference on Mixed Design of Integrated Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIXDES.2007.4286242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Biometric people recognition methods are increasingly popular, yet there is no biometric authentication standard used in everyday life. Despite a lot of work on biometric people recognition methods, especially those based on the iris pattern, which is the subject of the author's research, there is still room for designing a new, optimal method, e.g. one that would be simpler in computation, have a shorter iris signature and good distinctiveness. In the paper the author proposes some iris database analyses (e.g. spatial entropy and average image analyses) in order to find input images parameters helpful for designing an iris recognition method. Then, a new iris features extractor based on reverse biorthogonal wavelet rbio3.1 is proposed, which is simple in computation, has a shorter iris signature (340 bits) and quite good discriminative power (d'=6.3, EER=0,6%) in comparison with Daugman's method used as reference. For experiments the UBIRIS database of 2105 images of 241 persons was chosen.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于虹膜模式的人物识别新特征提取方法
生物特征识别方法越来越受欢迎,但在日常生活中还没有使用的生物特征认证标准。尽管在生物特征人物识别方法方面已经做了大量的工作,特别是基于虹膜模式的生物特征人物识别方法,这也是本文的研究主题,但仍然存在设计新的、最优的方法的空间,例如计算更简单、虹膜签名更短、显著性更好的方法。本文提出了一些虹膜数据库分析方法(如空间熵和平均图像分析),以寻找有助于设计虹膜识别方法的输入图像参数。在此基础上,提出了一种基于反向双正交小波rbio3.1的虹膜特征提取方法,该方法计算简单,具有较短的虹膜特征(340比特)和较好的判别能力(d′=6.3,EER= 0.6%)。实验选用UBIRIS数据库2105张图像,共241人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tradeoffs and Optimization in Analog CMOS Design Aura Removal Algorithm for High-Temperature Image Quantitative Analysis Systems Design of CMCU with EOLC and Encoding of Collections of Microoperations Accuracy of Analytical Evaluation of Interconnection Capacitances in Crossing Buses Design of Operational Amplifier with Low Power Consumption in 0.35 μm Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1