An inertial subgradient extragradient algorithm with adaptive stepsizes for variational inequality problems

Xiaokai Chang, Sanyang Liu, Zhao Deng, Suoping Li
{"title":"An inertial subgradient extragradient algorithm with adaptive stepsizes for variational inequality problems","authors":"Xiaokai Chang, Sanyang Liu, Zhao Deng, Suoping Li","doi":"10.1080/10556788.2021.1910946","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce an efficient subgradient extragradient (SE) based method for solving variational inequality problems with monotone operator in Hilbert space. In many existing SE methods, two values of operator are needed over each iteration and the Lipschitz constant of the operator or linesearch is required for estimating step sizes, which are usually not practical and expensive. To overcome these drawbacks, we present an inertial SE based algorithm with adaptive step sizes, estimated by using an approximation of the local Lipschitz constant without running a linesearch. Each iteration of the method only requires a projection on the feasible set and a value of the operator. The numerical experiments illustrate the efficiency of the proposed algorithm.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2021.1910946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we introduce an efficient subgradient extragradient (SE) based method for solving variational inequality problems with monotone operator in Hilbert space. In many existing SE methods, two values of operator are needed over each iteration and the Lipschitz constant of the operator or linesearch is required for estimating step sizes, which are usually not practical and expensive. To overcome these drawbacks, we present an inertial SE based algorithm with adaptive step sizes, estimated by using an approximation of the local Lipschitz constant without running a linesearch. Each iteration of the method only requires a projection on the feasible set and a value of the operator. The numerical experiments illustrate the efficiency of the proposed algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
变分不等式问题的一种自适应步长惯性次梯度外聚算法
本文介绍了一种有效的基于次梯度外梯度(SE)的方法,用于求解Hilbert空间中单调算子的变分不等式问题。在现有的许多SE方法中,每次迭代都需要两个算子值,并且需要算子的Lipschitz常数或直线研究来估计步长,这通常是不实用且昂贵的。为了克服这些缺点,我们提出了一种基于惯性SE的自适应步长算法,该算法通过使用局部Lipschitz常数的近似值来估计,而无需进行直线研究。该方法的每次迭代只需要在可行集上的一个投影和算子的一个值。数值实验验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximizing the number of rides served for time-limited Dial-a-Ride* A family of limited memory three term conjugate gradient methods A semismooth conjugate gradients method – theoretical analysis A mixed-integer programming formulation for optimizing the double row layout problem Robust reverse 1-center problems on trees with interval costs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1