Lithology segmentation using deep neural network

J. Lin, E. Haber
{"title":"Lithology segmentation using deep neural network","authors":"J. Lin, E. Haber","doi":"10.3997/2214-4609.202113339","DOIUrl":null,"url":null,"abstract":"Summary This paper avoids the difficulties in using conventional methods in lithology segmentation task by putting the tasks in the frame of computer vision. First, we setup a lithology dataset which contains paired topology, satellite and lithology images; Second, two heated neural networks HyperNet and UNet are introduced and applied in lithology segmentation task. The experiments show that both HyperNet and UNet are efficient and promising for the application in lithology segmentation. % Neural networks can increase the predicted accuracy three times than random guess, that greatly reduce the workload of professional lithology geologist.","PeriodicalId":265130,"journal":{"name":"82nd EAGE Annual Conference & Exhibition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"82nd EAGE Annual Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.202113339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary This paper avoids the difficulties in using conventional methods in lithology segmentation task by putting the tasks in the frame of computer vision. First, we setup a lithology dataset which contains paired topology, satellite and lithology images; Second, two heated neural networks HyperNet and UNet are introduced and applied in lithology segmentation task. The experiments show that both HyperNet and UNet are efficient and promising for the application in lithology segmentation. % Neural networks can increase the predicted accuracy three times than random guess, that greatly reduce the workload of professional lithology geologist.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度神经网络的岩性分割
本文将岩性分割任务置于计算机视觉的框架中,避免了传统方法在岩性分割任务中的困难。首先,我们建立了一个包含配对拓扑、卫星和岩性图像的岩性数据集;其次,介绍了HyperNet和UNet两种热神经网络,并将其应用于岩性分割任务中。实验结果表明,HyperNet和UNet在岩性分割中都是有效的,具有广阔的应用前景。神经网络预测精度比随机猜测提高3倍,大大减轻了专业岩性地质工作者的工作量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Workflow to Enhance Intercept and Gradient Data Quality Seismic Monitoring of the United Downs Deep Geothermal Power Project (UDDGP) Site with Public Seismic Networks The Utility of HLD/NAC to Guide Surfactant Selection and Design Inversion of Explosive Source Land Seismic Data to Determine Source Parameters Efficient Probabilistic Inversion of Induced Earthquake Parameters in 3D Heterogeneous Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1