{"title":"Detection of anomalies in surveillance scenarios using mixture models","authors":"Adrián Tomé, L. Salgado","doi":"10.1109/CCST.2017.8167830","DOIUrl":null,"url":null,"abstract":"In this paper we present a robust and simple method for the detection of anomalies in surveillance scenarios. We use a “bottom-up” approach that avoids any object tracking, making the system suitable for anomaly detection in crowds. A robust optical flow method is used for the extraction of accurate spatio-temporal motion information, which allows to get simple but discriminative descriptors that are employed to train a Gaussian mixture model. We evaluate our system in a publicly available dataset, concluding that our method outperforms similar anomaly detection approaches but with a simpler model and low-sized descriptors.","PeriodicalId":371622,"journal":{"name":"2017 International Carnahan Conference on Security Technology (ICCST)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Carnahan Conference on Security Technology (ICCST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.2017.8167830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper we present a robust and simple method for the detection of anomalies in surveillance scenarios. We use a “bottom-up” approach that avoids any object tracking, making the system suitable for anomaly detection in crowds. A robust optical flow method is used for the extraction of accurate spatio-temporal motion information, which allows to get simple but discriminative descriptors that are employed to train a Gaussian mixture model. We evaluate our system in a publicly available dataset, concluding that our method outperforms similar anomaly detection approaches but with a simpler model and low-sized descriptors.