Maximum likelihood wavelet fusion for aerospace NDE applications

M. Kumar, P. Ramuhalli
{"title":"Maximum likelihood wavelet fusion for aerospace NDE applications","authors":"M. Kumar, P. Ramuhalli","doi":"10.1109/EIT.2005.1627044","DOIUrl":null,"url":null,"abstract":"Wavelet-based data fusion techniques have been used extensively in several application areas, including quantification of flaw parameters in nondestructive evaluation applications. The use of hybrid systems including the use of wavelets and neural networks for fusion and corrosion characterization is relatively recent. While the hybrid approach usually results in fairly accurate results, the selection of the fusion parameters is manually accomplished and is typically a time-consuming process. This paper proposes a multiresolution data fusion algorithm to improve the performance of corrosion quantification in aircraft lap joints. A maximum likelihood estimation scheme is proposed to fuse data in the wavelet domain. The proposed algorithm reduces the dimensionality of the input and improves the robustness of the network. Initial results indicate that the proposed approach gives similar results to those obtained using manual parameter selection, and indicate the feasibility of the algorithm","PeriodicalId":358002,"journal":{"name":"2005 IEEE International Conference on Electro Information Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Conference on Electro Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2005.1627044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Wavelet-based data fusion techniques have been used extensively in several application areas, including quantification of flaw parameters in nondestructive evaluation applications. The use of hybrid systems including the use of wavelets and neural networks for fusion and corrosion characterization is relatively recent. While the hybrid approach usually results in fairly accurate results, the selection of the fusion parameters is manually accomplished and is typically a time-consuming process. This paper proposes a multiresolution data fusion algorithm to improve the performance of corrosion quantification in aircraft lap joints. A maximum likelihood estimation scheme is proposed to fuse data in the wavelet domain. The proposed algorithm reduces the dimensionality of the input and improves the robustness of the network. Initial results indicate that the proposed approach gives similar results to those obtained using manual parameter selection, and indicate the feasibility of the algorithm
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
航空无损检测应用的最大似然小波融合
基于小波的数据融合技术已广泛应用于多个应用领域,包括无损评估中缺陷参数的量化。使用混合系统,包括使用小波和神经网络进行融合和腐蚀表征是相对较新的。虽然混合方法通常会产生相当准确的结果,但融合参数的选择是手动完成的,并且通常是一个耗时的过程。为了提高飞机搭接件腐蚀量化性能,提出了一种多分辨率数据融合算法。提出了一种极大似然估计方法来融合小波域的数据。该算法降低了输入的维数,提高了网络的鲁棒性。初步结果表明,该方法与手动参数选择方法的结果相似,表明了该算法的可行性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Carry-save and binary sign-digit representations conversion Energy macro-modeling of embedded microprocessor using SystemC A proportional rate-based control scheme for active queue management Hierarchical clustering for image databases Theft-induced checkpointing for reconfigurable dataflow applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1