Analysis of the potential efficiency of post-filtering noisy images after lossy compression

B. Kovalenko, V. Rebrov, V. Lukin
{"title":"Analysis of the potential efficiency of post-filtering noisy images after lossy compression","authors":"B. Kovalenko, V. Rebrov, V. Lukin","doi":"10.36023/ujrs.2023.10.1.231","DOIUrl":null,"url":null,"abstract":"An increase in the number of images and their average size is the general trend nowadays. This increase leads to certain problems with data storage and transfer via communication lines. A common way to solve this problem is to apply lossy compression that provides sufficiently larger compression ratios compared to lossless compression approaches. However, lossy compression has several peculiarities, especially if a compressed image is corrupted by quite intensive noise. First, a specific noise-filtering effect is observed. Second, an optimal operational point (OOP) might exist where the quality of a compressed image is closer to the corresponding noise-free image than the quality of the original image according to a chosen quality metric. In this case, it is worth compressing this image in the OOP or its closest neighborhood. These peculiarities have been earlier studied and their positive impact on image quality improvement has been demonstrated. Filtering of noisy images due to lossy compression is not perfect. Because of this, it is worth checking can additional quality improvement be reached using such an approach as post-filtering. In this study, we attempt to answer the questions: “is it worth to post-filter an image after lossy compression, especially in OOP’s neighborhood? And what benefit can it bring in the sense of image quality?”. The study is carried out for better portable graphics (BPG) coder and the DCT-based filter focusing mainly on one-component (grayscale) images. The quality of images is characterized by several metrics such as PSNR, PSNR-HVS-M, and FSIM. Possible image quality increasing via post-filtering is demonstrated and the recommendations for filter parameter setting are given.","PeriodicalId":113561,"journal":{"name":"Ukrainian journal of remote sensing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian journal of remote sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36023/ujrs.2023.10.1.231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An increase in the number of images and their average size is the general trend nowadays. This increase leads to certain problems with data storage and transfer via communication lines. A common way to solve this problem is to apply lossy compression that provides sufficiently larger compression ratios compared to lossless compression approaches. However, lossy compression has several peculiarities, especially if a compressed image is corrupted by quite intensive noise. First, a specific noise-filtering effect is observed. Second, an optimal operational point (OOP) might exist where the quality of a compressed image is closer to the corresponding noise-free image than the quality of the original image according to a chosen quality metric. In this case, it is worth compressing this image in the OOP or its closest neighborhood. These peculiarities have been earlier studied and their positive impact on image quality improvement has been demonstrated. Filtering of noisy images due to lossy compression is not perfect. Because of this, it is worth checking can additional quality improvement be reached using such an approach as post-filtering. In this study, we attempt to answer the questions: “is it worth to post-filter an image after lossy compression, especially in OOP’s neighborhood? And what benefit can it bring in the sense of image quality?”. The study is carried out for better portable graphics (BPG) coder and the DCT-based filter focusing mainly on one-component (grayscale) images. The quality of images is characterized by several metrics such as PSNR, PSNR-HVS-M, and FSIM. Possible image quality increasing via post-filtering is demonstrated and the recommendations for filter parameter setting are given.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有损压缩后滤波噪声图像的潜在效率分析
图像数量和平均尺寸的增加是当今的大趋势。这种增加导致了通过通信线路进行数据存储和传输的某些问题。解决这个问题的一种常用方法是应用有损压缩,与无损压缩方法相比,它提供了足够大的压缩比。然而,有损压缩有几个特点,特别是当压缩图像被相当强的噪声损坏时。首先,观察到特定的噪声滤波效果。其次,根据所选择的质量度量,可能存在一个最优操作点(OOP),其中压缩图像的质量比原始图像的质量更接近相应的无噪声图像。在这种情况下,值得在OOP或其最近的邻域中压缩该图像。这些特性早前已经被研究过,它们对图像质量改善的积极影响已经被证明。由于有损压缩导致的噪声图像的滤波并不完美。正因为如此,有必要检查使用后滤波等方法是否能达到额外的质量改进。在本研究中,我们试图回答以下问题:“有损压缩后的图像是否值得进行后期滤波,特别是在OOP附近?”它能给图像质量带来什么好处?”研究了更好的便携式图形(BPG)编码器和主要针对单分量(灰度)图像的基于dct的滤波器。图像质量由几个指标表征,如PSNR、PSNR- hvs - m和FSIM。论证了通过后滤波提高图像质量的可能性,并给出了滤波参数设置的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Оперативний супутниковий геомоніторинг наслідків руйнування греблі Каховської гідроелектростанції Обґрунтування вибору полігонів, визначення їх критеріїв і параметрів для проведення досліджень з оцінювання вуглеводневого потенціалу надр шляхом комбінування геолого-геофізичної та аерокосмічної інформації Simulation of the vulnerability of the steppe landscape and climate zone of Ukraine to climate changes based on space image data Thanks to the Reviewers of the Journal in 2023 Спектральна модель динамічних компонентів ландшафтів на основі багатоспектральних космічних знімків Землі
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1