f-Sim: A quasi-realistic fMRI simulation toolbox using digital brain phantom and modeled noise

H. Parmar, Xiangyu Liu, Hua Xie, B. Nutter, S. Mitra, L. R. Long, Sameer Kiran Antani
{"title":"f-Sim: A quasi-realistic fMRI simulation toolbox using digital brain phantom and modeled noise","authors":"H. Parmar, Xiangyu Liu, Hua Xie, B. Nutter, S. Mitra, L. R. Long, Sameer Kiran Antani","doi":"10.1109/SSIAI.2018.8470346","DOIUrl":null,"url":null,"abstract":"Functional Magnetic Resonance Imaging (fMRI) uses a noninvasive technique to study the functionality of the human brain by measuring the Blood Oxygenation Level Dependent (BOLD) signal and has been researched for decades. However, some potential problems still remain in achieving correct interpretation of BOLD-induced signals due to quite low signal levels, high noise levels, artifacts, lack of ground truth and a number of other inherent problems. We present here the development of a MATLAB based fMRI simulator (f-Sim) using digital phantom brain that generates quasi-realistic 4D fMRI volumes including modeled noise. Such 4D fMRI data can serve to hypothesize ground truth for experimentally acquired data under both task-evoked and resting state designs in investigation of localized or whole brain activation and functional connectivity patterns.","PeriodicalId":422209,"journal":{"name":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSIAI.2018.8470346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Functional Magnetic Resonance Imaging (fMRI) uses a noninvasive technique to study the functionality of the human brain by measuring the Blood Oxygenation Level Dependent (BOLD) signal and has been researched for decades. However, some potential problems still remain in achieving correct interpretation of BOLD-induced signals due to quite low signal levels, high noise levels, artifacts, lack of ground truth and a number of other inherent problems. We present here the development of a MATLAB based fMRI simulator (f-Sim) using digital phantom brain that generates quasi-realistic 4D fMRI volumes including modeled noise. Such 4D fMRI data can serve to hypothesize ground truth for experimentally acquired data under both task-evoked and resting state designs in investigation of localized or whole brain activation and functional connectivity patterns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
f-Sim:一个准真实的fMRI模拟工具箱,使用数字脑幻象和模拟噪声
功能磁共振成像(fMRI)使用一种无创技术,通过测量血氧水平依赖(BOLD)信号来研究人类大脑的功能,已经研究了几十年。然而,由于相当低的信号电平、高噪声电平、伪影、缺乏接地真值和许多其他固有问题,在实现bold诱导信号的正确解释方面仍然存在一些潜在问题。我们在这里介绍了一个基于MATLAB的fMRI模拟器(f-Sim)的开发,该模拟器使用数字幻脑生成准真实的4D fMRI体积,包括建模噪声。在研究局部或全脑激活和功能连接模式时,这些4D fMRI数据可以为任务诱发和静息状态设计下实验获得的数据假设基本事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graph Modularity and Randomness Measures : A Comparative Study Drive-Net: Convolutional Network for Driver Distraction Detection In-between and cross-frequency dependence-based summarization of resting-state fMRI data A Ground-Truth Fusion Method for Image Segmentation Evaluation Sleep Analysis Using Motion and Head Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1