{"title":"On Optimizing a Generic Function in SAT","authors":"Alexander Nadel","doi":"10.34727/2020/isbn.978-3-85448-042-6_28","DOIUrl":null,"url":null,"abstract":"The goal of this study is to improve the scalability of today's SAT-based solutions for optimization problems and to pave the way towards extending the range of optimization problems solvable with SAT in practice. Let OptSAT be the problem of optimizing a generic Pseudo-Boolean function, given a satisfiable propositional formula F. We introduce an incremental and anytime incomplete algorithm for solving OptSAT, called Polosat. We show that integrating Polosat into a state-of-the-art open-source anytime MaxSAT solver significantly improves the solver's performance. Furthermore, we demonstrate that Polosat substantially improves the solution quality of an industrial placement tool, where placement is a sub-stage of the physical design stage of chip design.","PeriodicalId":105705,"journal":{"name":"2020 Formal Methods in Computer Aided Design (FMCAD)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Formal Methods in Computer Aided Design (FMCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The goal of this study is to improve the scalability of today's SAT-based solutions for optimization problems and to pave the way towards extending the range of optimization problems solvable with SAT in practice. Let OptSAT be the problem of optimizing a generic Pseudo-Boolean function, given a satisfiable propositional formula F. We introduce an incremental and anytime incomplete algorithm for solving OptSAT, called Polosat. We show that integrating Polosat into a state-of-the-art open-source anytime MaxSAT solver significantly improves the solver's performance. Furthermore, we demonstrate that Polosat substantially improves the solution quality of an industrial placement tool, where placement is a sub-stage of the physical design stage of chip design.