{"title":"STABILITY ENHANCEMENT OF ALUMINUM-AIR BATTERY","authors":"Syed Mazhar Shah","doi":"10.26782/jmcms.2021.10.00003","DOIUrl":null,"url":null,"abstract":"A comparative analysis is presented for an aluminum-air battery with a carbon-coated and non-coated anode made of 4N pure aluminum with the purpose to enhance the stability of the battery. The carbon coating was proven to be quite effective which lasted almost two times more than the non-coated cell with little to almost no effect on the electrochemical behavior. A method was also proposed to limit the self-discharge electrode corrosion of the aluminum-air battery by limiting the oxygen supply to the cell from atmospheric air. The blockage of the air supply limits the oxidation-reduction reaction necessary for cell operation. For that purpose, the cell was tested in vacuum condition for 25 days which showed quite impressive results when compared with the cell kept in a non-vacuum room condition. It had retained its potential as well as resisted the corrosion quite well with almost negligible weight loss and byproduct accumulation","PeriodicalId":254600,"journal":{"name":"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26782/jmcms.2021.10.00003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A comparative analysis is presented for an aluminum-air battery with a carbon-coated and non-coated anode made of 4N pure aluminum with the purpose to enhance the stability of the battery. The carbon coating was proven to be quite effective which lasted almost two times more than the non-coated cell with little to almost no effect on the electrochemical behavior. A method was also proposed to limit the self-discharge electrode corrosion of the aluminum-air battery by limiting the oxygen supply to the cell from atmospheric air. The blockage of the air supply limits the oxidation-reduction reaction necessary for cell operation. For that purpose, the cell was tested in vacuum condition for 25 days which showed quite impressive results when compared with the cell kept in a non-vacuum room condition. It had retained its potential as well as resisted the corrosion quite well with almost negligible weight loss and byproduct accumulation