{"title":"Surveillance systems integration for real time object identification using weighted bounding single neural network","authors":"Ryann Alimuin, Aldrich Guiron, E. Dadios","doi":"10.1109/HNICEM.2017.8269461","DOIUrl":null,"url":null,"abstract":"In this paper, an implementation of a single neural network that classifies objects using bounding boxes and class probabilities is utilized. This features are combined with a real time surveillance system that can identify multiple targets at the same time. YOLO9000 is a contemporary tool in object detection that can detect and recognize multiple targets under different categories in real-time. The system uses a multi-scale training that varies between sizes and recognizable patterns. Training of the single neural network upon detection and classification of a target varies depending upon the computer specifications. Being a classified as a simple expert system, it may less likely predict false positive results if objects are not pre-trained, but through proper intensive training and more image inputs it can predict objects in a more precise classification. This research is intended to integrate the YOLO9000 67fps concurrent monitor with surveillance hardware.","PeriodicalId":104407,"journal":{"name":"2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM.2017.8269461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, an implementation of a single neural network that classifies objects using bounding boxes and class probabilities is utilized. This features are combined with a real time surveillance system that can identify multiple targets at the same time. YOLO9000 is a contemporary tool in object detection that can detect and recognize multiple targets under different categories in real-time. The system uses a multi-scale training that varies between sizes and recognizable patterns. Training of the single neural network upon detection and classification of a target varies depending upon the computer specifications. Being a classified as a simple expert system, it may less likely predict false positive results if objects are not pre-trained, but through proper intensive training and more image inputs it can predict objects in a more precise classification. This research is intended to integrate the YOLO9000 67fps concurrent monitor with surveillance hardware.