A new particle swarm optimization algorithm for solving constraint and mixed variables optimization problem

Wei-gang Wang, H. Ni
{"title":"A new particle swarm optimization algorithm for solving constraint and mixed variables optimization problem","authors":"Wei-gang Wang, H. Ni","doi":"10.1109/CINC.2010.5643867","DOIUrl":null,"url":null,"abstract":"Many engineering optimization problems frequently encounter mixed variables and nonlinear constraints, which add considerably to the solution complexity. Very few of the existing methods can yield a globally optimal solution when the objective functions are non-convex and non-differentiable. We developed a new particle swarm optimization (PSO) algorithm. The algorithm introduced a mechanism of simulated annealing (SA), crossover and mutation operator. It may improve the evolutionary rate and precision of the algorithm. We put forward a method of stochastic approximation, in order to realize the transformation from continuous variable to discrete variable. For handling constraints, we used death penalty function method. Based on engineering design problem, computational result was better than the other solutions reported in the literature. Therefore, the new algorithm is feasible, and its accuracy and robustness are obviously superior to the other algorithms.","PeriodicalId":227004,"journal":{"name":"2010 Second International Conference on Computational Intelligence and Natural Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computational Intelligence and Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINC.2010.5643867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many engineering optimization problems frequently encounter mixed variables and nonlinear constraints, which add considerably to the solution complexity. Very few of the existing methods can yield a globally optimal solution when the objective functions are non-convex and non-differentiable. We developed a new particle swarm optimization (PSO) algorithm. The algorithm introduced a mechanism of simulated annealing (SA), crossover and mutation operator. It may improve the evolutionary rate and precision of the algorithm. We put forward a method of stochastic approximation, in order to realize the transformation from continuous variable to discrete variable. For handling constraints, we used death penalty function method. Based on engineering design problem, computational result was better than the other solutions reported in the literature. Therefore, the new algorithm is feasible, and its accuracy and robustness are obviously superior to the other algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种求解约束和混合变量优化问题的粒子群算法
许多工程优化问题经常遇到混合变量和非线性约束,这大大增加了求解的复杂性。当目标函数为非凸不可微时,现有的方法很少能得到全局最优解。提出了一种新的粒子群优化算法。该算法引入了模拟退火(SA)、交叉和变异算子的机制。它可以提高算法的进化速度和精度。为了实现连续变量到离散变量的转换,提出了一种随机逼近的方法。对于约束的处理,我们采用了死刑函数法。基于工程设计问题,计算结果优于文献报道的其他解决方案。因此,新算法是可行的,其精度和鲁棒性明显优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary design of ANN structure using genetic algorithm Performance analysis of spread spectrum communication system in fading enviornment and Interference Comprehensive evaluation of forest industries based on rough sets and artificial neural network A new descent algorithm with curve search rule for unconstrained minimization A multi-agent simulation for intelligence economy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1