72-Hours Ahead Prediction of Ionospheric TEC using Radial Basis Function Neural Networks

B. Muslim, Charisma Juni Kumalasari, Nurrohmat Widiajanti, Asnawi
{"title":"72-Hours Ahead Prediction of Ionospheric TEC using Radial Basis Function Neural Networks","authors":"B. Muslim, Charisma Juni Kumalasari, Nurrohmat Widiajanti, Asnawi","doi":"10.1109/ICECCE52056.2021.9514237","DOIUrl":null,"url":null,"abstract":"Prediction of Indonesia's local and regional ionosphere TEC for the next 72 hours is required for space weather services at PUSSAINSA through the Space Weather Information and Forecast Services SWIFTS website, especially during ionosphere predictions on Friday which requires predicting the ionosphere condition from Saturday to Monday according to user needs. To this date, a global modeling the form of the W index, has been used for the prediction. Therefore, we developed a local ionosphere TEC prediction model as a starting point in the development of a regional ionosphere prediction model for Indonesia. The prediction model is built using a Radial Basis Function Neural Network (RBFNN). The input of the RBFNN model is the ionospheric TEC data for the previous 72 hours and the minimum value of the geomagnetic disturbance index (Dst) for the last3 days. The output isa prediction of the TEC 72 hours ahead. In the testing phase, the RBFNN model was able to predict local TEC with a daily standard deviation of between 2.75 and 4.9 Total Electron Content Unit (TECU).","PeriodicalId":302947,"journal":{"name":"2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCE52056.2021.9514237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Prediction of Indonesia's local and regional ionosphere TEC for the next 72 hours is required for space weather services at PUSSAINSA through the Space Weather Information and Forecast Services SWIFTS website, especially during ionosphere predictions on Friday which requires predicting the ionosphere condition from Saturday to Monday according to user needs. To this date, a global modeling the form of the W index, has been used for the prediction. Therefore, we developed a local ionosphere TEC prediction model as a starting point in the development of a regional ionosphere prediction model for Indonesia. The prediction model is built using a Radial Basis Function Neural Network (RBFNN). The input of the RBFNN model is the ionospheric TEC data for the previous 72 hours and the minimum value of the geomagnetic disturbance index (Dst) for the last3 days. The output isa prediction of the TEC 72 hours ahead. In the testing phase, the RBFNN model was able to predict local TEC with a daily standard deviation of between 2.75 and 4.9 Total Electron Content Unit (TECU).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于径向基函数神经网络的电离层TEC 72小时预报
PUSSAINSA的空间天气服务需要通过空间天气信息和预报服务SWIFTS网站预测未来72小时印尼本地和区域电离层TEC,特别是在周五的电离层预测期间,需要根据用户需要预测周六至周一的电离层状况。到目前为止,一种以W指数形式的全球模型已被用于预测。因此,我们开发了一个局部电离层TEC预测模型,作为开发印度尼西亚区域电离层预测模型的起点。采用径向基函数神经网络(RBFNN)建立预测模型。RBFNN模型的输入是前72 h的电离层TEC数据和近3 d的地磁扰动指数(Dst)的最小值。输出是提前72小时对TEC的预测。在测试阶段,RBFNN模型能够预测局部TEC,日标准差在2.75 ~ 4.9总电子含量单位(TECU)之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WiFi Performance Estimation for Voice Services Feasibility of using Air-conducted and Bone-conducted Sounds Transmitted through Eyeglasses Frames for User Authentication Non-Linear Auto-Regressive Modeling based Day-ahead BESS Dispatch Strategy for Distribution Transformer Overload Management Hot Spot Analysis in Asset Inspections in The Electricity Distribution Area Extreme Learning Machine for Automatic Language Identification Utilizing Emotion Speech Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1