Adaptive learning of Bayesian Networks for the qualification of traffic data by Contaminated Dirichlet Density Functions

M. Junghans, H. Jentschel
{"title":"Adaptive learning of Bayesian Networks for the qualification of traffic data by Contaminated Dirichlet Density Functions","authors":"M. Junghans, H. Jentschel","doi":"10.1109/INFTECH.2008.4621661","DOIUrl":null,"url":null,"abstract":"The concept of Bayesian networks (BNs) is an established method to model data fusion in sensor networks of several equal or different sensors. Although the method is powerful, there is a particular need for accurate sensors, the consideration of the affecting external, e.g. environmental conditions, and internal influences, e.g. the physical life of the sensor, in the sensor model and an accurate a-priori knowledge about the underlying process. In this paper an adaptive algorithm for learning BNs is introduced, which is applied to update the time-variant a-priori probabilities in sensor networks. This algorithm makes use of contaminated Dirichlet density functions (CDDFs). The effectiveness of adaptive learning is demonstrated for vehicle classification in traffic surveillance.","PeriodicalId":247264,"journal":{"name":"2008 1st International Conference on Information Technology","volume":"58 31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 1st International Conference on Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFTECH.2008.4621661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The concept of Bayesian networks (BNs) is an established method to model data fusion in sensor networks of several equal or different sensors. Although the method is powerful, there is a particular need for accurate sensors, the consideration of the affecting external, e.g. environmental conditions, and internal influences, e.g. the physical life of the sensor, in the sensor model and an accurate a-priori knowledge about the underlying process. In this paper an adaptive algorithm for learning BNs is introduced, which is applied to update the time-variant a-priori probabilities in sensor networks. This algorithm makes use of contaminated Dirichlet density functions (CDDFs). The effectiveness of adaptive learning is demonstrated for vehicle classification in traffic surveillance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
污染狄利克雷密度函数对交通数据进行定性的贝叶斯网络自适应学习
贝叶斯网络(BNs)的概念是一种建立在多个相等或不同传感器组成的传感器网络中数据融合模型的方法。虽然该方法很强大,但特别需要精确的传感器,考虑传感器模型中影响的外部因素(例如环境条件)和内部影响(例如传感器的物理寿命),以及关于底层过程的准确先验知识。本文介绍了一种学习神经网络的自适应算法,并将其应用于传感器网络中时变先验概率的更新。该算法利用了污染狄利克雷密度函数(cddf)。应用自适应学习方法对交通监控中的车辆分类进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GIS for remote sensing, analysis and visualisation of marine pollution and other marine ecosystem components CartoMetric: Semantic ontology evaluation with cartographic methods Web-based GIS technologies dedicated for presenting semi-dynamic geospatial data Matrix-based classifiers applied to recognition of musical notation symbols RESTful atomic services for distributed digital libraries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1