Computing Eigenvalues of Diagonalizable Matrices on a Quantum Computer

Changpeng Shao
{"title":"Computing Eigenvalues of Diagonalizable Matrices on a Quantum Computer","authors":"Changpeng Shao","doi":"10.1145/3527845","DOIUrl":null,"url":null,"abstract":"Computing eigenvalues of matrices is ubiquitous in numerical linear algebra problems. Currently, fast quantum algorithms for estimating eigenvalues of Hermitian and unitary matrices are known. However, the general case is far from fully understood in the quantum case. Based on a quantum algorithm for solving linear ordinary differential equations, we show how to estimate the eigenvalues of diagonalizable matrices that only have real eigenvalues. The output is a superposition of the eigenpairs, and the overall complexity is polylog in the dimension for sparse matrices. Under an assumption, we extend the algorithm to diagonalizable matrices with complex eigenvalues.","PeriodicalId":365166,"journal":{"name":"ACM Transactions on Quantum Computing","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3527845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Computing eigenvalues of matrices is ubiquitous in numerical linear algebra problems. Currently, fast quantum algorithms for estimating eigenvalues of Hermitian and unitary matrices are known. However, the general case is far from fully understood in the quantum case. Based on a quantum algorithm for solving linear ordinary differential equations, we show how to estimate the eigenvalues of diagonalizable matrices that only have real eigenvalues. The output is a superposition of the eigenpairs, and the overall complexity is polylog in the dimension for sparse matrices. Under an assumption, we extend the algorithm to diagonalizable matrices with complex eigenvalues.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在量子计算机上计算可对角矩阵的特征值
矩阵特征值的计算在数值线性代数问题中是普遍存在的。目前已知用于估计厄米矩阵和酉矩阵特征值的快速量子算法。然而,一般情况在量子情况下还远没有完全被理解。基于求解线性常微分方程的量子算法,我们展示了如何估计只有实特征值的对角化矩阵的特征值。输出是特征对的叠加,总体复杂度在稀疏矩阵的维数上是多元的。在一个假设条件下,我们将该算法推广到具有复特征值的可对角矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revisiting the Mapping of Quantum Circuits: Entering the Multi-Core Era An optimal linear-combination-of-unitaries-based quantum linear system solver Efficient Syndrome Decoder for Heavy Hexagonal QECC via Machine Learning Improving the Efficiency of Quantum Circuits for Information Set Decoding Quantum Bilinear Interpolation Algorithms Based on Geometric Centers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1