Improved Forecasting of Realized Variance Measures

Jeremias Bekierman, H. Manner
{"title":"Improved Forecasting of Realized Variance Measures","authors":"Jeremias Bekierman, H. Manner","doi":"10.2139/ssrn.2812586","DOIUrl":null,"url":null,"abstract":"We consider the problem of forecasting realized variance measures. These measures are highly persistent, but also noisy estimates of the underlying integrated variance. Recently, Bollerslev, Patton and Quaedvlieg (2016, Journal of Econometrics, 192, 1-18) exploited this fact to extend the commonly used Heterogeneous Autoregressive (HAR) by letting the model parameters vary over time depending on estimated measurement errors. We propose an alternative specification that allows the autoregressive parameter of the HAR model for volatilities to be driven by a latent Gaussian autoregressive process that may depend on the estimated measurement error. The model is estimated using the Kalman filter. Our analysis considers realized volatilities of 40 stocks from the S&P 500 for three different observation frequencies. Our preferred model provides a better model fit and generates superior forecasts. It consistently outperforms the competing models in terms of different loss functions and for various subsamples of the forecasting period.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2812586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of forecasting realized variance measures. These measures are highly persistent, but also noisy estimates of the underlying integrated variance. Recently, Bollerslev, Patton and Quaedvlieg (2016, Journal of Econometrics, 192, 1-18) exploited this fact to extend the commonly used Heterogeneous Autoregressive (HAR) by letting the model parameters vary over time depending on estimated measurement errors. We propose an alternative specification that allows the autoregressive parameter of the HAR model for volatilities to be driven by a latent Gaussian autoregressive process that may depend on the estimated measurement error. The model is estimated using the Kalman filter. Our analysis considers realized volatilities of 40 stocks from the S&P 500 for three different observation frequencies. Our preferred model provides a better model fit and generates superior forecasts. It consistently outperforms the competing models in terms of different loss functions and for various subsamples of the forecasting period.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
已实现方差测度的改进预测
我们考虑预测已实现方差的问题。这些措施是高度持久的,但也是对潜在综合方差的嘈杂估计。最近,Bollerslev, Patton和Quaedvlieg (2016, Journal of Econometrics, 192, 1-18)利用这一事实,通过让模型参数随估计测量误差随时间变化来扩展常用的异质性自回归(HAR)。我们提出了另一种规范,允许波动性的HAR模型的自回归参数由潜在的高斯自回归过程驱动,该过程可能取决于估计的测量误差。利用卡尔曼滤波对模型进行估计。我们的分析考虑了标准普尔500指数中40只股票在三种不同观察频率下的已实现波动率。我们的首选模型提供了更好的模型拟合,并产生了更好的预测。在不同的损失函数和预测周期的各种子样本方面,它始终优于竞争模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embrace the Differences: Revisiting the Pollyvote Method of Combining Forecasts for U.S. Presidential Elections (2004 to 2020) A Century of Economic Policy Uncertainty Through the French-Canadian Lens Informational Efficiency and Behaviour Within In-Play Prediction Markets A New Class of Robust Observation-Driven Models Modelling and Forecasting of the Nigerian Stock Exchange.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1