Deep space formation reconfiguration using pseudospectral method

G. Ma, Haibin Huang, Yufei Zhuang
{"title":"Deep space formation reconfiguration using pseudospectral method","authors":"G. Ma, Haibin Huang, Yufei Zhuang","doi":"10.1109/ISSCAA.2010.5633350","DOIUrl":null,"url":null,"abstract":"In this paper we employ pseudospectral method to solve the problem of trajectory optimization for satellites formation reconfiguration in deep space. The basic problem is all the satellites take a specified rest-to-rest maneuver synchronously without colliding with each other. First, the state and input vectors are discretized at Legendre-Gauss-Lobatto (LGL) points, and the objective function is selected as minimizing the total fuel consumption during maneuver. Then the optimization problem is converted into a parameter nonlinear programming problem with the non-convex constraints of collision avoidance as inequality equations using Legendre pseudospectral method. At the end of this paper, an example is worked out and the simulation results demonstrate that the proposed approach can produce high approximation accuracy and a small computational amount, which makes the algorithm of trajectory generation for formation reconfiguration used on-line possible.","PeriodicalId":324652,"journal":{"name":"2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCAA.2010.5633350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we employ pseudospectral method to solve the problem of trajectory optimization for satellites formation reconfiguration in deep space. The basic problem is all the satellites take a specified rest-to-rest maneuver synchronously without colliding with each other. First, the state and input vectors are discretized at Legendre-Gauss-Lobatto (LGL) points, and the objective function is selected as minimizing the total fuel consumption during maneuver. Then the optimization problem is converted into a parameter nonlinear programming problem with the non-convex constraints of collision avoidance as inequality equations using Legendre pseudospectral method. At the end of this paper, an example is worked out and the simulation results demonstrate that the proposed approach can produce high approximation accuracy and a small computational amount, which makes the algorithm of trajectory generation for formation reconfiguration used on-line possible.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用伪谱方法进行深空地层重构
本文采用伪谱方法解决了深空卫星编队重构的轨道优化问题。基本的问题是所有的卫星在不发生碰撞的情况下同步进行指定的静止机动。首先,在legende - gaas - lobatto (LGL)点对状态向量和输入向量进行离散化,选择以机动过程总油耗最小为目标函数;然后利用勒让德伪谱法将避碰的非凸约束转化为不等式方程形式的参数非线性规划问题。最后给出了一个算例,仿真结果表明,该方法逼近精度高,计算量小,为在线应用的编队重构轨迹生成算法提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The application of signal analysis in the nuclear power system under ocean conditions The application of wavelet filtering on denoising hemispherical resonator gyro signal Research on signal de-noising technique for MEMS gyro The correction of spaceborne satellite's yaw steering law based on the star tracker high-precision measurement Application of magneto-rheological (MR) damper in landing gear shimmy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1