Temperature management in multiprocessor SoCs using online learning

A. Coskun, T. Simunic, K. Gross
{"title":"Temperature management in multiprocessor SoCs using online learning","authors":"A. Coskun, T. Simunic, K. Gross","doi":"10.1145/1391469.1391693","DOIUrl":null,"url":null,"abstract":"In deep submicron circuits, thermal hot spots and high temperature gradients increase the cooling costs, and degrade reliability and performance. In this paper, we propose a low-cost temperature management strategy for multicore systems to reduce the adverse effects of hot spots and temperature variations. Our technique utilizes online learning to select the best policy for the current workload characteristics among a given set of expert policies. We achieve 20% and 60% average decrease in the frequency of hot spots and thermal cycles respectively in comparison to the best performing expert, and reduce the spatial gradients to below 5%.","PeriodicalId":412696,"journal":{"name":"2008 45th ACM/IEEE Design Automation Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 45th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1391469.1391693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

Abstract

In deep submicron circuits, thermal hot spots and high temperature gradients increase the cooling costs, and degrade reliability and performance. In this paper, we propose a low-cost temperature management strategy for multicore systems to reduce the adverse effects of hot spots and temperature variations. Our technique utilizes online learning to select the best policy for the current workload characteristics among a given set of expert policies. We achieve 20% and 60% average decrease in the frequency of hot spots and thermal cycles respectively in comparison to the best performing expert, and reduce the spatial gradients to below 5%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用在线学习的多处理器soc温度管理
在深亚微米电路中,热热点和高温梯度增加了冷却成本,降低了可靠性和性能。在本文中,我们提出了一种低成本的多核系统温度管理策略,以减少热点和温度变化的不利影响。我们的技术利用在线学习在一组给定的专家策略中选择适合当前工作负载特征的最佳策略。与表现最好的专家相比,我们在热点和热循环频率上分别实现了20%和60%的平均下降,并将空间梯度降低到5%以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An automatic Scratch Pad Memory management tool and MPEG-4 encoder case study Standard interfaces in mobile terminals — increasing the efficiency of device design and accelerating innovation Concurrent topology and routing optimization in automotive network integration Keeping hot chips cool: Are IC thermal problems hot air? Customizing computation accelerators for extensible multi-issue processors with effective optimization techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1