Imputing missing values for Dataset of Used Cars

Samveg Shah, Mayur Telrandhe, Prathmesh Waghmode, Sunil Ghane
{"title":"Imputing missing values for Dataset of Used Cars","authors":"Samveg Shah, Mayur Telrandhe, Prathmesh Waghmode, Sunil Ghane","doi":"10.1109/ASIANCON55314.2022.9908600","DOIUrl":null,"url":null,"abstract":"Missing values in a dataset has always been a problem for data analysis and modelling. Building a model over a dataset where the missing values are not handled properly will definitely degrade the accuracy and performance of model. This problem particularly impacts deterministic models. Knowing that majority of the models that are used today are deterministic makes dealing with missing values crucial before applying the machine learning model. In this paper we have discussed various approaches such as statistical method (using mean), MICE and KNN for imputing missing values and tested their accuracy in combination with two prediction algorithms linear regression and random forest regression. We have used dataset of used cars containing missing values in few columns to predict the price of car given the details of car and thus comparing the accuracy of the estimated price with different approaches.","PeriodicalId":429704,"journal":{"name":"2022 2nd Asian Conference on Innovation in Technology (ASIANCON)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd Asian Conference on Innovation in Technology (ASIANCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASIANCON55314.2022.9908600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Missing values in a dataset has always been a problem for data analysis and modelling. Building a model over a dataset where the missing values are not handled properly will definitely degrade the accuracy and performance of model. This problem particularly impacts deterministic models. Knowing that majority of the models that are used today are deterministic makes dealing with missing values crucial before applying the machine learning model. In this paper we have discussed various approaches such as statistical method (using mean), MICE and KNN for imputing missing values and tested their accuracy in combination with two prediction algorithms linear regression and random forest regression. We have used dataset of used cars containing missing values in few columns to predict the price of car given the details of car and thus comparing the accuracy of the estimated price with different approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二手车数据集缺失值的估算
数据集中的缺失值一直是数据分析和建模的一个问题。在缺失值处理不当的数据集上构建模型肯定会降低模型的准确性和性能。这个问题特别影响确定性模型。目前使用的大多数模型都是确定性的,因此在应用机器学习模型之前处理缺失值至关重要。在本文中,我们讨论了各种方法,如统计方法(使用平均值),MICE和KNN来推算缺失值,并结合线性回归和随机森林回归两种预测算法测试了它们的准确性。我们使用了包含缺失值的二手车数据集来预测给定汽车细节的汽车价格,从而比较了不同方法估计价格的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Distributed Multi-Sensor DCNN & Multivariate Time Series Classification Based technique for Earthquake early warning Cross Technology Communication between LTE-U and Wi-Fi to Improve Overall QoS of 5G System Prediction of Ayurvedic Herbs for Specific Diseases by Classification Techniques in Machine Learning Face Mask Detection Using Machine Learning Techniques Closed-form BER Expressions of QPSK Modulation over NOMA-PNC Parallel Relay Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1