Essentially optimal interactive certificates in linear algebra

J. Dumas, E. Kaltofen
{"title":"Essentially optimal interactive certificates in linear algebra","authors":"J. Dumas, E. Kaltofen","doi":"10.1145/2608628.2608644","DOIUrl":null,"url":null,"abstract":"Certificates to a linear algebra computation are additional data structures for each output, which can be used by a---possibly randomized---verification algorithm that proves the correctness of each output. The certificates are essentially optimal if the time (and space) complexity of verification is essentially linear in the input size <i>N</i>, meaning <i>N</i> times a factor <i>N</i><sup><i>o</i>(1)</sup>, i.e., a factor <i>N</i><sup><i>η</i>(<i>N</i>)</sup> with lim<sub><i>N</i> → ∞</sub> η(<i>N</i>) = 0.\n We give algorithms that compute essentially optimal certificates for the positive semidefiniteness, Frobenius form, characteristic and minimal polynomial of an <i>n × n</i> dense integer matrix <i>A</i>. Our certificates can be verified in Monte-Carlo bit complexity (<i>n</i><sup>2</sup> log ||<i>A</i>||)<sup>1+o(1)</sup>, where log ||A|| is the bit size of the integer entries, solving an open problem in [Kaltofen, Nehring, Saunders, Proc. ISSAC 2011] subject to computational hardness assumptions.\n Second, we give algorithms that compute certificates for the rank of sparse or structured <i>n × n</i> matrices over an abstract field, whose Monte Carlo verification complexity is 2 matrix-times-vector products + <i>n</i><sup>1+o(1)</sup> arithmetic operations in the field. For example, if the <i>n × n</i> input matrix is sparse with <i>n</i><sup>1+o(1)</sup> non-zero entries, our rank certificate can be verified in <i>n</i><sup>1+o(1)</sup> field operations. This extends also to integer matrices with only an extra log ||<i>A</i>||<sup>1+o(1)</sup> factor.\n All our certificates are based on interactive verification protocols with the interaction removed by a Fiat-Shamir identification heuristic. The validity of our verification procedure is subject to standard computational hardness assumptions from cryptography.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Certificates to a linear algebra computation are additional data structures for each output, which can be used by a---possibly randomized---verification algorithm that proves the correctness of each output. The certificates are essentially optimal if the time (and space) complexity of verification is essentially linear in the input size N, meaning N times a factor No(1), i.e., a factor Nη(N) with limN → ∞ η(N) = 0. We give algorithms that compute essentially optimal certificates for the positive semidefiniteness, Frobenius form, characteristic and minimal polynomial of an n × n dense integer matrix A. Our certificates can be verified in Monte-Carlo bit complexity (n2 log ||A||)1+o(1), where log ||A|| is the bit size of the integer entries, solving an open problem in [Kaltofen, Nehring, Saunders, Proc. ISSAC 2011] subject to computational hardness assumptions. Second, we give algorithms that compute certificates for the rank of sparse or structured n × n matrices over an abstract field, whose Monte Carlo verification complexity is 2 matrix-times-vector products + n1+o(1) arithmetic operations in the field. For example, if the n × n input matrix is sparse with n1+o(1) non-zero entries, our rank certificate can be verified in n1+o(1) field operations. This extends also to integer matrices with only an extra log ||A||1+o(1) factor. All our certificates are based on interactive verification protocols with the interaction removed by a Fiat-Shamir identification heuristic. The validity of our verification procedure is subject to standard computational hardness assumptions from cryptography.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性代数中最优的交互式证书
线性代数计算的证书是每个输出的附加数据结构,可以由证明每个输出正确性的验证算法(可能是随机的)使用。如果验证的时间(和空间)复杂度在输入大小N中基本上是线性的,则证书本质上是最优的,这意味着N乘以因子No(1),即因子Nη(N),其中limN→∞η(N) = 0。我们给出了计算n × n密集整数矩阵A的正半确定性、Frobenius形式、特征和最小多项式的本质上最优证书的算法。我们的证书可以在蒙特卡罗比特复杂度(n2 log ||A||)1+o(1)中进行验证,其中log ||A||是整数项的比特大小,解决了[Kaltofen, Nehring, Saunders, Proc. ISSAC 2011]中受计算硬度假设的开放问题。其次,我们给出了在抽象域上计算稀疏或结构化n × n矩阵秩的证书的算法,其蒙特卡罗验证复杂度为2矩阵乘以向量积+域内n1+o(1)个算术运算。例如,如果n × n的输入矩阵是稀疏的,有n1+o(1)个非零条目,那么我们的秩证书可以在n1+o(1)个域运算中得到验证。这也可以扩展到整数矩阵,只有一个额外的log ||A||1+ 0(1)因子。我们所有的证书都基于交互式验证协议,其中的交互被一种Fiat-Shamir识别启发式方法所消除。我们的验证程序的有效性取决于密码学的标准计算硬度假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Minimal and Minimum Cylindrical Algebraic Decompositions Automated Reasoning For The Existence Of Darboux Polynomials New Bounds on Quotient Polynomials with Applications to Exact Division and Divisibility Testing of Sparse Polynomials Efficient detection of redundancies in systems of linear inequalities✱ Transcendental methods in numerical algebraic geometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1