Active Perception based on Energy Minimization in Multimodal Human-robot Interaction

Takato Horii, Y. Nagai, M. Asada
{"title":"Active Perception based on Energy Minimization in Multimodal Human-robot Interaction","authors":"Takato Horii, Y. Nagai, M. Asada","doi":"10.1145/3125739.3125757","DOIUrl":null,"url":null,"abstract":"Humans use various types of modalities to express own internal states. If a robot interacting with humans can pay attention to limited signals, it should select more informative ones to estimate the partners' states. We propose an active perception method that controls the robot's attention based on an energy minimization criterion. An energy-based model, which has learned to estimate the latent state from sensory signals, calculates energy values corresponding to occurrence probabilities of the signals; The lower the energy is, the higher the likelihood of them. Our method therefore selects the modality that provides the lowest expectation energy among available ones to exploit more frequent experiences. We employed a multimodal deep belief network to represent relationships between humans' states and expressions. Our method demonstrated better performance for the modality selection than other methods in a task of emotion estimation. We discuss the potential of our method to advance human-robot interaction.","PeriodicalId":346669,"journal":{"name":"Proceedings of the 5th International Conference on Human Agent Interaction","volume":"18 2 Suppl 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Human Agent Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3125739.3125757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Humans use various types of modalities to express own internal states. If a robot interacting with humans can pay attention to limited signals, it should select more informative ones to estimate the partners' states. We propose an active perception method that controls the robot's attention based on an energy minimization criterion. An energy-based model, which has learned to estimate the latent state from sensory signals, calculates energy values corresponding to occurrence probabilities of the signals; The lower the energy is, the higher the likelihood of them. Our method therefore selects the modality that provides the lowest expectation energy among available ones to exploit more frequent experiences. We employed a multimodal deep belief network to represent relationships between humans' states and expressions. Our method demonstrated better performance for the modality selection than other methods in a task of emotion estimation. We discuss the potential of our method to advance human-robot interaction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于能量最小化的多模态人机交互主动感知
人类使用各种类型的模态来表达自己的内部状态。如果一个与人类交互的机器人能够关注有限的信号,它应该选择更多的信息来估计伙伴的状态。提出了一种基于能量最小化准则控制机器人注意力的主动感知方法。一个基于能量的模型,学会了从感觉信号中估计潜在状态,计算信号发生概率对应的能量值;能量越低,它们出现的可能性就越高。因此,我们的方法在可用的模式中选择提供最低期望能量的模式来利用更频繁的体验。我们使用了一个多模态深度信念网络来表示人类状态和表情之间的关系。在情绪估计任务中,我们的方法表现出比其他方法更好的情态选择性能。我们讨论了我们的方法在推进人机交互方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conversational Agent Learning Natural Gaze and Motion of Multi-Party Conversation from Example Keynote Talk Virtual Character Agent for Lowering Knowledge-sharing Barriers on Q&A Websites The Impact of Personalisation on Human-Robot Interaction in Learning Scenarios Human-Assisted Learning of Object Models through Active Object Exploration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1