Resource allocation in SVD-assisted broadband MIMO systems using polynomial matrix factorization

André Sandmann, A. Ahrens, S. Lochmann
{"title":"Resource allocation in SVD-assisted broadband MIMO systems using polynomial matrix factorization","authors":"André Sandmann, A. Ahrens, S. Lochmann","doi":"10.5220/0005265403170324","DOIUrl":null,"url":null,"abstract":"Removing channel interference in broadband multiple-input multiple-output (MIMO) systems is a task which can be solved by applying a spatio-temporal vector coding (STVC) channel description and using singular value decomposition (SVD) in combination with signal pre- and post-processing. In this contribution a polynomial matrix factorization channel description in combination with a specific SVD algorithm for polynomial matrices is analyzed and compared to the commonly used STVC SVD. This comparison points out the analogies and differences of both equalization methods. Furthermore, the bit error rate (BER) performance is evaluated for two different channel types and is optimized by applying bit-allocation schemes involving a power loading strategy. Our results, obtained by computer simulation, show that polynomial matrix factorization such as polynomial matrix SVD could be an alternative signal processing approach compared to conventional SVD-based MIMO approaches in frequency-selective MIMO channels.","PeriodicalId":345016,"journal":{"name":"2015 International Conference on Pervasive and Embedded Computing and Communication Systems (PECCS)","volume":"34 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Pervasive and Embedded Computing and Communication Systems (PECCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005265403170324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Removing channel interference in broadband multiple-input multiple-output (MIMO) systems is a task which can be solved by applying a spatio-temporal vector coding (STVC) channel description and using singular value decomposition (SVD) in combination with signal pre- and post-processing. In this contribution a polynomial matrix factorization channel description in combination with a specific SVD algorithm for polynomial matrices is analyzed and compared to the commonly used STVC SVD. This comparison points out the analogies and differences of both equalization methods. Furthermore, the bit error rate (BER) performance is evaluated for two different channel types and is optimized by applying bit-allocation schemes involving a power loading strategy. Our results, obtained by computer simulation, show that polynomial matrix factorization such as polynomial matrix SVD could be an alternative signal processing approach compared to conventional SVD-based MIMO approaches in frequency-selective MIMO channels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多项式矩阵分解的svd辅助宽带MIMO系统资源分配
消除宽带多输入多输出(MIMO)系统中的信道干扰是一个可以通过时空矢量编码(STVC)信道描述和奇异值分解(SVD)相结合的信号预处理和后处理来解决的问题。本文分析了多项式矩阵分解信道描述与特定的多项式矩阵SVD算法相结合,并与常用的STVC SVD进行了比较。这一比较指出了两种均衡方法的相似之处和区别。此外,对两种不同信道类型的误码率(BER)性能进行了评估,并通过采用包含功率负载策略的比特分配方案进行了优化。通过计算机模拟得到的结果表明,在频率选择性MIMO信道中,与传统的基于SVD的MIMO方法相比,多项式矩阵分解(如多项式矩阵SVD)可以成为一种替代信号处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the road to a reference architecture for pervasive computing Design and implementation of a new run-time life-cycle for interactive public display applications Perceptually weighted compressed sensing for video acquisition Antennas' correlation influence on the GMD-assisted MIMO channels performance Schedulers for BGW tasks to guarantee quality of service of embedded real-time systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1