Leveraging laziness, browsing-pattern aware stacked models for sequential accommodation learning to rank

Edoardo D'Amico, Giovanni Gabbolini, Daniele Montesi, Matteo Moreschini, Federico Parroni, F. Piccinini, Alberto Rossettini, Alessio Russo Introito, Cesare Bernardis, Maurizio Ferrari Dacrema
{"title":"Leveraging laziness, browsing-pattern aware stacked models for sequential accommodation learning to rank","authors":"Edoardo D'Amico, Giovanni Gabbolini, Daniele Montesi, Matteo Moreschini, Federico Parroni, F. Piccinini, Alberto Rossettini, Alessio Russo Introito, Cesare Bernardis, Maurizio Ferrari Dacrema","doi":"10.1145/3359555.3359563","DOIUrl":null,"url":null,"abstract":"In this paper we provide an overview of the approach we used as team PoliCloud8 for the ACM RecSys Challenge 2019. The competition, organized by Trivago, focuses on the problem of session-based and context-aware accommodation recommendation in a travel domain. The goal is to suggest suitable accommodations fitting the needs of the traveller to maximise the chance of a redirect (click-out) to a booking site, relying on explicit and implicit user signals within a session (clicks, search refinement, filter usage) to detect the users intent. Our team proposes a solution based on several new features, designed to capture specific types of information as well as some well-known models: gradient boosting, neural networks and a stacking-based ensemble.","PeriodicalId":255213,"journal":{"name":"Proceedings of the Workshop on ACM Recommender Systems Challenge","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on ACM Recommender Systems Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3359555.3359563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper we provide an overview of the approach we used as team PoliCloud8 for the ACM RecSys Challenge 2019. The competition, organized by Trivago, focuses on the problem of session-based and context-aware accommodation recommendation in a travel domain. The goal is to suggest suitable accommodations fitting the needs of the traveller to maximise the chance of a redirect (click-out) to a booking site, relying on explicit and implicit user signals within a session (clicks, search refinement, filter usage) to detect the users intent. Our team proposes a solution based on several new features, designed to capture specific types of information as well as some well-known models: gradient boosting, neural networks and a stacking-based ensemble.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用懒惰,浏览模式感知堆叠模型顺序适应学习排序
在本文中,我们概述了我们作为PoliCloud8团队在2019年ACM RecSys挑战赛中使用的方法。该竞赛由Trivago组织,重点关注旅游领域中基于会话和情境感知的住宿推荐问题。目标是建议适合旅行者需求的合适住宿,以最大限度地增加重定向(点击退出)到预订网站的机会,依靠会话中的显性和隐性用户信号(点击、搜索优化、过滤器使用)来检测用户的意图。我们的团队提出了一个基于几个新特征的解决方案,旨在捕获特定类型的信息以及一些众所周知的模型:梯度增强、神经网络和基于堆栈的集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust contextual models for in-session personalization Boosting algorithms for a session-based, context-aware recommender system in an online travel domain Session-based item recommendation with pairwise features An attentive RNN model for session-based and context-aware recommendations: a solution to the RecSys challenge 2019 Learning to rank hotels for search and recommendation from session-based interaction logs and meta data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1