{"title":"Low-power high-level synthesis for FPGA architectures","authors":"Deming Chen, J. Cong, Yiping Fan","doi":"10.1145/871506.871541","DOIUrl":null,"url":null,"abstract":"This paper addresses two aspects of low-power design for FPGA circuits. First, we present an RT-level power estimator for FPGAs with consideration of wire length. The power estimator closely reflects both dynamic and static power contributed by various FPGA components in 0.1 /spl mu/m technology. The power estimation error is 16.2% on average. Second, we present a low power high level synthesis system, named LOPASS, for FPGA designs. It includes two algorithms for power consumption reduction: (i) a simulated annealing engine that carries out resource selection function unit binding, scheduling, register binding, and data pat. generation simultaneously to effectively reduce power; (ii) an enhanced weighted bipartite matching algorithm that is able to reduce the total amount of MUX ports by 22.7%. Experimental results show that LOPASS is able to reduce-power consumption by 35.8% compared to the results-of -Synopsys' Behavioral Compiler.","PeriodicalId":355883,"journal":{"name":"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"114","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/871506.871541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 114
Abstract
This paper addresses two aspects of low-power design for FPGA circuits. First, we present an RT-level power estimator for FPGAs with consideration of wire length. The power estimator closely reflects both dynamic and static power contributed by various FPGA components in 0.1 /spl mu/m technology. The power estimation error is 16.2% on average. Second, we present a low power high level synthesis system, named LOPASS, for FPGA designs. It includes two algorithms for power consumption reduction: (i) a simulated annealing engine that carries out resource selection function unit binding, scheduling, register binding, and data pat. generation simultaneously to effectively reduce power; (ii) an enhanced weighted bipartite matching algorithm that is able to reduce the total amount of MUX ports by 22.7%. Experimental results show that LOPASS is able to reduce-power consumption by 35.8% compared to the results-of -Synopsys' Behavioral Compiler.