{"title":"A process algebra based program and system representation for reverse engineering","authors":"E. Merlo, Renato DeMori, K. Kontogiannis","doi":"10.1109/WPC.1993.263910","DOIUrl":null,"url":null,"abstract":"A reverse engineering approach based on process algebras for system representation and understanding is presented. Process algebras offer both a formal framework for representing communicating processes and a proof theory for proving semantic equivalences between them. Programs and program fragments are denoted as concurrent agents and code behaviour is defined in terms of interactions among agents in a process algebra representation suitable for subsequent analysis. Semantic and behavioural equivalences between programming plans, which represent programming stereo-types, and code fragments can be defined in this formal system together with a deduction system to prove them. Several advantages and further research issues on the use of process algebra for reverse engineering and maintenance are identified and discussed.<<ETX>>","PeriodicalId":151277,"journal":{"name":"[1993] IEEE Second Workshop on Program Comprehension","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] IEEE Second Workshop on Program Comprehension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPC.1993.263910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A reverse engineering approach based on process algebras for system representation and understanding is presented. Process algebras offer both a formal framework for representing communicating processes and a proof theory for proving semantic equivalences between them. Programs and program fragments are denoted as concurrent agents and code behaviour is defined in terms of interactions among agents in a process algebra representation suitable for subsequent analysis. Semantic and behavioural equivalences between programming plans, which represent programming stereo-types, and code fragments can be defined in this formal system together with a deduction system to prove them. Several advantages and further research issues on the use of process algebra for reverse engineering and maintenance are identified and discussed.<>