Sentiment Classification of English and Hindi Music Lyrics Using Supervised Machine Learning Algorithms

S. N., Shruti Wagle, Priyanka Ghosh, Karishma Kishore
{"title":"Sentiment Classification of English and Hindi Music Lyrics Using Supervised Machine Learning Algorithms","authors":"S. N., Shruti Wagle, Priyanka Ghosh, Karishma Kishore","doi":"10.1109/ASIANCON55314.2022.9908688","DOIUrl":null,"url":null,"abstract":"Finding music based on one’s mood is difficult unless it is manually classified and separated into distinct playlists. This is especially tough when the song is not in English due to varying lexical and syntactic styles. Our project employs textual sentiment analysis by testing various binary classifier algorithms - Random Forest, Naive Bayes, Support Vector Machine (SVM), and AdaBoost - to gauge which method is best for classifying English and Hindi language music lyrics into positive (happy) and negative (sad) sentiment.","PeriodicalId":429704,"journal":{"name":"2022 2nd Asian Conference on Innovation in Technology (ASIANCON)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd Asian Conference on Innovation in Technology (ASIANCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASIANCON55314.2022.9908688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Finding music based on one’s mood is difficult unless it is manually classified and separated into distinct playlists. This is especially tough when the song is not in English due to varying lexical and syntactic styles. Our project employs textual sentiment analysis by testing various binary classifier algorithms - Random Forest, Naive Bayes, Support Vector Machine (SVM), and AdaBoost - to gauge which method is best for classifying English and Hindi language music lyrics into positive (happy) and negative (sad) sentiment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用监督机器学习算法的英语和印地语音乐歌词情感分类
根据一个人的情绪找到音乐是很困难的,除非它被手动分类并分成不同的播放列表。当这首歌不是英文的时候,由于词汇和句法风格的不同,这尤其困难。我们的项目采用文本情感分析,通过测试各种二元分类算法——随机森林、朴素贝叶斯、支持向量机(SVM)和AdaBoost——来衡量哪种方法最适合将英语和印地语音乐歌词分为积极(快乐)和消极(悲伤)情绪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Distributed Multi-Sensor DCNN & Multivariate Time Series Classification Based technique for Earthquake early warning Cross Technology Communication between LTE-U and Wi-Fi to Improve Overall QoS of 5G System Prediction of Ayurvedic Herbs for Specific Diseases by Classification Techniques in Machine Learning Face Mask Detection Using Machine Learning Techniques Closed-form BER Expressions of QPSK Modulation over NOMA-PNC Parallel Relay Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1