Toward An Integrated Approach to Localizing Failures in Community Water Networks

Qing Han, Phu Nguyen, R. Eguchi, K. Hsu, N. Venkatasubramanian
{"title":"Toward An Integrated Approach to Localizing Failures in Community Water Networks","authors":"Qing Han, Phu Nguyen, R. Eguchi, K. Hsu, N. Venkatasubramanian","doi":"10.1109/ICDCS.2017.81","DOIUrl":null,"url":null,"abstract":"We present a cyber-physical-human distributed computing framework, AquaSCALE, for gathering, analyzing and localizing anomalous operations of increasingly failure-prone community water services. Today, detection of pipe breaks/leaks in water networks takes hours to days. AquaSCALE leverages dynamic data from multiple information sources including IoT (Internet of Things) sensing data, geophysical data, human input, and simulation/modeling engines to create a sensor-simulation-data integration platform that can accurately and quickly identify vul-nerable spots. We propose a two-phase workflow that begins with robust simulation methods using a commercial grade hydraulic simulator - EPANET, enhanced with the support for IoT sensor and pipe failure modelings. It generates a profile of anomalous events using diverse plug-and-play machine learning techniques. The profile then incorporates with external observations (NOAA weather reports and twitter feeds) to rapidly and reliably isolate broken water pipes. We evaluate the two-phase mechanism in canonical and real-world water networks under different failure scenarios. Our results indicate that the proposed approach with offline learning and online inference can locate multiple simultaneous pipe failures at fine level of granularity (individual pipeline level) with high level of accuracy with detection time reduced by orders of magnitude (from hours/days to minutes).","PeriodicalId":127689,"journal":{"name":"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2017.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We present a cyber-physical-human distributed computing framework, AquaSCALE, for gathering, analyzing and localizing anomalous operations of increasingly failure-prone community water services. Today, detection of pipe breaks/leaks in water networks takes hours to days. AquaSCALE leverages dynamic data from multiple information sources including IoT (Internet of Things) sensing data, geophysical data, human input, and simulation/modeling engines to create a sensor-simulation-data integration platform that can accurately and quickly identify vul-nerable spots. We propose a two-phase workflow that begins with robust simulation methods using a commercial grade hydraulic simulator - EPANET, enhanced with the support for IoT sensor and pipe failure modelings. It generates a profile of anomalous events using diverse plug-and-play machine learning techniques. The profile then incorporates with external observations (NOAA weather reports and twitter feeds) to rapidly and reliably isolate broken water pipes. We evaluate the two-phase mechanism in canonical and real-world water networks under different failure scenarios. Our results indicate that the proposed approach with offline learning and online inference can locate multiple simultaneous pipe failures at fine level of granularity (individual pipeline level) with high level of accuracy with detection time reduced by orders of magnitude (from hours/days to minutes).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对社区供水网络故障本地化的综合方法
我们提出了一个网络-物理-人类分布式计算框架,AquaSCALE,用于收集,分析和定位越来越容易发生故障的社区供水服务的异常操作。如今,检测管网管道破裂/泄漏需要数小时到数天的时间。AquaSCALE利用来自多个信息源的动态数据,包括物联网(IoT)传感数据、地球物理数据、人工输入和仿真/建模引擎,创建了一个传感器-仿真-数据集成平台,可以准确、快速地识别易受攻击的地方。我们提出了一个两阶段的工作流程,首先使用商业级液压模拟器EPANET进行强大的仿真方法,并通过支持物联网传感器和管道故障建模进行增强。它使用各种即插即用的机器学习技术生成异常事件的概况。然后,该概况与外部观测(NOAA天气报告和twitter消息)相结合,以快速可靠地隔离破裂的水管。我们评估了典型和现实水网络在不同失效情况下的两相机制。我们的研究结果表明,采用离线学习和在线推理的方法可以在细粒度级别(单个管道级别)定位多个同时发生的管道故障,具有很高的精度,检测时间减少了几个数量级(从小时/天到分钟)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proximity Awareness Approach to Enhance Propagation Delay on the Bitcoin Peer-to-Peer Network ACTiCLOUD: Enabling the Next Generation of Cloud Applications The Internet of Things and Multiagent Systems: Decentralized Intelligence in Distributed Computing Decentralised Runtime Monitoring for Access Control Systems in Cloud Federations The Case for Using Content-Centric Networking for Distributing High-Energy Physics Software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1