Verification of a Batch of Bad Signatures by Using the Matrix-Detection Algorithm

Yi-Li Huang, Chu-Hsing Lin, Fang-Yie Leu
{"title":"Verification of a Batch of Bad Signatures by Using the Matrix-Detection Algorithm","authors":"Yi-Li Huang, Chu-Hsing Lin, Fang-Yie Leu","doi":"10.1109/CCP.2011.46","DOIUrl":null,"url":null,"abstract":"Batch verification is a method devised to verify multiple signatures as a whole simultaneously. In literatures, we can see that some conventional batch verification schemes cannot effectively and efficiently identity bad signatures. Small Exponent test, a popular batch verification method, has its own problems, e.g., after a test, bad signatures still exist with some escape probabilities. In this paper, we propose a batch verification approach, called Matrix-Detection Algorithm (MDA for short), with which when a batch of signatures has less than four bad signatures or odd number of bad signatures, all bad signatures can be identified. Given 1024 signatures with 4 bad signatures, the maximum escape probability pmax of the MDA is 5.3×10-5 , and max p decreases as digital signatures or bad signatures increase. Analytic results show that the MDA is more secure and efficient than the SET.","PeriodicalId":167131,"journal":{"name":"2011 First International Conference on Data Compression, Communications and Processing","volume":"46 42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 First International Conference on Data Compression, Communications and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCP.2011.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Batch verification is a method devised to verify multiple signatures as a whole simultaneously. In literatures, we can see that some conventional batch verification schemes cannot effectively and efficiently identity bad signatures. Small Exponent test, a popular batch verification method, has its own problems, e.g., after a test, bad signatures still exist with some escape probabilities. In this paper, we propose a batch verification approach, called Matrix-Detection Algorithm (MDA for short), with which when a batch of signatures has less than four bad signatures or odd number of bad signatures, all bad signatures can be identified. Given 1024 signatures with 4 bad signatures, the maximum escape probability pmax of the MDA is 5.3×10-5 , and max p decreases as digital signatures or bad signatures increase. Analytic results show that the MDA is more secure and efficient than the SET.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用矩阵检测算法验证一批不良签名
批验证是将多个签名作为一个整体同时进行验证的一种方法。在文献中,我们可以看到一些传统的批验证方案不能有效和高效地识别坏签名。小指数测试是一种流行的批处理验证方法,但它也有自己的问题,例如,在测试后,仍然存在不良签名并有一定的逃逸概率。本文提出了一种批验证方法,即矩阵检测算法(Matrix-Detection Algorithm,简称MDA),当一批签名的坏签名个数小于4个或奇数个时,可以识别出所有的坏签名。在1024个签名和4个坏签名的情况下,MDA的最大逃逸概率pmax为5.3×10-5, max p随着数字签名或坏签名的增加而减小。分析结果表明,MDA比SET更安全、更高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CoTracks: A New Lossy Compression Schema for Tracking Logs Data Based on Multiparametric Segmentation Fast Implementation of Block Motion Estimation Algorithms in Video Encoders Electrophysiological Data Processing Using a Dynamic Range Compressor Coupled to a Ten Bits A/D Convertion Port A Generic Intrusion Detection and Diagnoser System Based on Complex Event Processing QoS Performance Testing of Multimedia Delivery over WiMAX Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1