{"title":"Deep learning for BER prediction in optical connections impaired by inter-core crosstalk","authors":"Sofia Esteves, J. Rebola, Pedro Santana","doi":"10.1109/CSNDSP54353.2022.9908035","DOIUrl":null,"url":null,"abstract":"Four-level pulse amplitude modulation (PAM4) signals transmission in short-haul intensity modulation-direct detection datacenters connections supported by homogeneous weakly-coupled multicore fibers is seen as a promising technology to meet the future challenge of providing enough bandwidth and achieve high data capacity in datacenter links. However, in multicore fibers, inter-core crosstalk (ICXT) limits significantly the performance of such short-reach connections by causing large bit error rate (BER) fluctuations. In this work, a convolutional neural network (CNN) is proposed for eye-pattern analysis and BER prediction in PAM4 inter-datacenter optical connections impaired by ICXT, with the aim of optical performance monitoring. The performance of the CNN is assessed by estimation of the root mean square error (RMSE) using a synthetic dataset created with Monte Carlo simulation. Considering PAM4 interdatacenter connections with one interfering core and for different skew-symbol rate products, extinction ratios and crosstalk levels, the obtained results show that the implemented CNN is able to predict the BER without surpassing a RMSE limit of 0.1.","PeriodicalId":288069,"journal":{"name":"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNDSP54353.2022.9908035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Four-level pulse amplitude modulation (PAM4) signals transmission in short-haul intensity modulation-direct detection datacenters connections supported by homogeneous weakly-coupled multicore fibers is seen as a promising technology to meet the future challenge of providing enough bandwidth and achieve high data capacity in datacenter links. However, in multicore fibers, inter-core crosstalk (ICXT) limits significantly the performance of such short-reach connections by causing large bit error rate (BER) fluctuations. In this work, a convolutional neural network (CNN) is proposed for eye-pattern analysis and BER prediction in PAM4 inter-datacenter optical connections impaired by ICXT, with the aim of optical performance monitoring. The performance of the CNN is assessed by estimation of the root mean square error (RMSE) using a synthetic dataset created with Monte Carlo simulation. Considering PAM4 interdatacenter connections with one interfering core and for different skew-symbol rate products, extinction ratios and crosstalk levels, the obtained results show that the implemented CNN is able to predict the BER without surpassing a RMSE limit of 0.1.