Image Compression using Adaptive Wavelet Packet and Multistage Vector Quantization

S. Esakkirajan, T. Veerakumar, N. Malmurugan, P. Navaneethan
{"title":"Image Compression using Adaptive Wavelet Packet and Multistage Vector Quantization","authors":"S. Esakkirajan, T. Veerakumar, N. Malmurugan, P. Navaneethan","doi":"10.1109/ICIINFS.2008.4798404","DOIUrl":null,"url":null,"abstract":"This paper presents a new image coding technique using adaptive wavelet packet and multistage vector quantization. Wavelet packets are generalization of wavelet transform, capable of providing arbitrary frequency resolution to meet signal's spectral behavior. Image properties, filter and cost function are the three prime factors which are commonly used to select wavelet packet basis. In this paper, the best basis is selected through singular value decomposition. After selecting the best tree, the coefficients of the best tree are quantized using multistage vector quantization. Experimental results show that wavelet packet transform brings consistent improvement over dyadic wavelet transform.","PeriodicalId":429889,"journal":{"name":"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2008.4798404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a new image coding technique using adaptive wavelet packet and multistage vector quantization. Wavelet packets are generalization of wavelet transform, capable of providing arbitrary frequency resolution to meet signal's spectral behavior. Image properties, filter and cost function are the three prime factors which are commonly used to select wavelet packet basis. In this paper, the best basis is selected through singular value decomposition. After selecting the best tree, the coefficients of the best tree are quantized using multistage vector quantization. Experimental results show that wavelet packet transform brings consistent improvement over dyadic wavelet transform.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应小波包和多阶段矢量量化的图像压缩
提出了一种基于自适应小波包和多级矢量量化的图像编码方法。小波包是小波变换的推广,能够提供任意频率分辨率来满足信号的频谱特性。图像属性、滤波器和代价函数是选择小波包基常用的三个主要因素。本文通过奇异值分解选择最优基。选择最佳树后,采用多级矢量量化方法对最佳树的系数进行量化。实验结果表明,小波包变换与二进小波变换相比具有一致的改进效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Mega Programmable Interactive Robotic Surface (AMPIRS) State Estimation using Shifted Legendre Polynomials Fault diagnosis of rolling element bearing using time-domain features and neural networks New Method of Image Compression Using Multiwavelets and Set Partitioning Algorithm A Bandwidth Aware Topology Generation Mechanism for Peer-to-Peer based Publish-Subscribe Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1