Predicting Jump Arrivals in Stock Prices Using Neural Networks with Limit Order Book Data

Milla Mäkinen, Alexandros Iosifidis, M. Gabbouj, J. Kanniainen
{"title":"Predicting Jump Arrivals in Stock Prices Using Neural Networks with Limit Order Book Data","authors":"Milla Mäkinen, Alexandros Iosifidis, M. Gabbouj, J. Kanniainen","doi":"10.2139/ssrn.3165408","DOIUrl":null,"url":null,"abstract":"This paper proposes a new method for predicting jump arrivals in stock markets with high-frequency limit order book data. We introduce a new model architecture, based on Convolutional Long Short-Term Memory with attention, to apply time series representation learning with memory and to focus the prediction attention on the most important features to improve performance. Using order book data on five liquid U.S. stocks, we provide empirical evidence on the efficacy of the proposed approach. We find that the proposed approach with an attention mechanism outperforms the multi-layer perceptron network as well as the convolutional neural network and Long Short-Term memory model. The use of limit order book data was found to improve the performance of the proposed model in jump prediction, either clearly or marginally, depending on the underlying stock.","PeriodicalId":114865,"journal":{"name":"ERN: Neural Networks & Related Topics (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Neural Networks & Related Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3165408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes a new method for predicting jump arrivals in stock markets with high-frequency limit order book data. We introduce a new model architecture, based on Convolutional Long Short-Term Memory with attention, to apply time series representation learning with memory and to focus the prediction attention on the most important features to improve performance. Using order book data on five liquid U.S. stocks, we provide empirical evidence on the efficacy of the proposed approach. We find that the proposed approach with an attention mechanism outperforms the multi-layer perceptron network as well as the convolutional neural network and Long Short-Term memory model. The use of limit order book data was found to improve the performance of the proposed model in jump prediction, either clearly or marginally, depending on the underlying stock.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用神经网络与限价订单数据预测股票价格的跳跃到达
本文提出了一种利用高频限价单数据预测股票市场跳跃到达的新方法。我们引入了一种新的模型架构,基于卷积长短期记忆与注意,应用时间序列表示学习与记忆,并将预测注意力集中在最重要的特征上,以提高性能。利用五种流动性美国股票的订单簿数据,我们提供了关于所建议方法有效性的经验证据。我们发现该方法的注意机制优于多层感知器网络、卷积神经网络和长短期记忆模型。根据标的股票的不同,使用限价订单簿数据可以明显或间接地提高所提出模型在跳跃预测中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Edgeworth Cycles Forecasting High-Dimensional Covariance Matrices of Asset Returns with Hybrid GARCH-LSTMs Improve the Prediction of Wind Speed using Hyperbolic Tangent Function with Artificial Neural Network Using Deep Q-Networks to Train an Agent to Navigate the Unity ML-Agents Banana Environment What Can Analysts Learn from Artificial Intelligence about Fundamental Analysis?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1