Background and skin colour independent hand region extraction and static gesture recognition

P. Mohan, Shrey Srivastava, Garvita Tiwari, R. Kala
{"title":"Background and skin colour independent hand region extraction and static gesture recognition","authors":"P. Mohan, Shrey Srivastava, Garvita Tiwari, R. Kala","doi":"10.1109/IC3.2015.7346669","DOIUrl":null,"url":null,"abstract":"Hand extraction and gesture recognition has always been a challenging problem in its general form. In this paper, we consider a fixed set of standard gestures and a reasonably structured environment and develop three effective procedures for extracting hand from the image, two of which are for plain non-complex static background and one for complex static background making it independent of the skin and background colours. The second part is of recognizing the gesture and making it scale and rotation invariant. For hand extraction, the three basic concepts used are 1. Gaussian distribution, 2. K-Mean classification and 3. Simple background subtraction and consecutive frame subtraction to find the palm region in the complete image. In gesture recognition, we extracted some features like centre of hand region, no. of fingers and the distance between the fingers. Using these features, the gestures are classified into seven standard hand gestures.","PeriodicalId":217950,"journal":{"name":"2015 Eighth International Conference on Contemporary Computing (IC3)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Eighth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2015.7346669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Hand extraction and gesture recognition has always been a challenging problem in its general form. In this paper, we consider a fixed set of standard gestures and a reasonably structured environment and develop three effective procedures for extracting hand from the image, two of which are for plain non-complex static background and one for complex static background making it independent of the skin and background colours. The second part is of recognizing the gesture and making it scale and rotation invariant. For hand extraction, the three basic concepts used are 1. Gaussian distribution, 2. K-Mean classification and 3. Simple background subtraction and consecutive frame subtraction to find the palm region in the complete image. In gesture recognition, we extracted some features like centre of hand region, no. of fingers and the distance between the fingers. Using these features, the gestures are classified into seven standard hand gestures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
背景与肤色无关的手部区域提取与静态手势识别
手部提取和手势识别一直是一个具有挑战性的问题。在本文中,我们考虑了一组固定的标准手势和一个合理结构的环境,并开发了三种有效的从图像中提取手的程序,其中两种用于简单的非复杂静态背景,另一种用于复杂静态背景,使其独立于皮肤和背景颜色。第二部分是识别手势并使其缩放和旋转不变。对于手提取,使用的三个基本概念是:1。高斯分布,2。3. k -均值分类;简单的背景减法和连续的帧减法,在完整的图像中找到手掌区域。在手势识别中,我们提取了一些特征,如手的中心区域,没有。手指和手指之间的距离。利用这些特征,手势被分为七种标准手势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementing security technique on generic database Pruned feature space for metamorphic malware detection using Markov Blanket Mitigation of desynchronization attack during inter-eNodeB handover key management in LTE Task behaviour inputs to a heterogeneous multiprocessor scheduler Hand written digit recognition system for South Indian languages using artificial neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1