Using rough sets to edit training set in k-NN method

Y. Mota, S. Joseph, Yuniesky Lezcano, Rafael Bello, M. Lorenzo, Yaimara Pizano
{"title":"Using rough sets to edit training set in k-NN method","authors":"Y. Mota, S. Joseph, Yuniesky Lezcano, Rafael Bello, M. Lorenzo, Yaimara Pizano","doi":"10.1109/ISDA.2005.98","DOIUrl":null,"url":null,"abstract":"Rough set theory (RST) is a technique for data analysis. In this paper, we use RST to improve the performance of the k-NN method. The RST is used to edit the training set. We propose two methods to edit training sets, which are based on the lower and upper approximations. Experimental results show a satisfactory performance of the k-NN using these techniques.","PeriodicalId":345842,"journal":{"name":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2005.98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Rough set theory (RST) is a technique for data analysis. In this paper, we use RST to improve the performance of the k-NN method. The RST is used to edit the training set. We propose two methods to edit training sets, which are based on the lower and upper approximations. Experimental results show a satisfactory performance of the k-NN using these techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用粗糙集编辑k-NN方法中的训练集
粗糙集理论(RST)是一种数据分析技术。在本文中,我们使用RST来改进k-NN方法的性能。RST用于编辑训练集。我们提出了基于上下近似的两种训练集编辑方法。实验结果表明,使用这些技术的k-NN具有令人满意的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed service-oriented architecture for information extraction system "Semanta" HAUNT-24: 24-bit hierarchical, application-confined unique naming technique The verification's criterion of learning algorithm New evolutionary approach to the GCP: a premature convergence and an evolution process character A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1