{"title":"A New Adaptive Modem for Long Haul HF Digital Communications at Data Rates Greater than 1 bps/Hz","authors":"P. Anderson, F. Hsu, M. Sandler","doi":"10.1109/MILCOM.1982.4805970","DOIUrl":null,"url":null,"abstract":"Reliable digital communication over long-haul HF circuits, at rates above 1 bps/Hz, is possible if an adaptive equalizer technique is used which will successfully follow the fading characteristics of the time-dispersive channel. This paper summarizes an investigation of this tracking problem which led to the selection of a square-root Kalman algorithm to update the coefficients of a decision feedback equalizer (DFE). The design and implementation of a new HF modem utilizing the Kalman DFE in conjunction with a continuous GO BACK N ARQ strategy is described. Results of performance tests at data rates from 2400 to 9600 bps using a 3 kHz real-time HF channel simulator are presented. Both low error rate and high throughput are achieved using the combined adaptive channel equalization and ARQ techniques. Preliminary results from tests over a long-haul live link are also reported.","PeriodicalId":179832,"journal":{"name":"MILCOM 1982 - IEEE Military Communications Conference - Progress in Spread Spectrum Communications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1982-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 1982 - IEEE Military Communications Conference - Progress in Spread Spectrum Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.1982.4805970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Reliable digital communication over long-haul HF circuits, at rates above 1 bps/Hz, is possible if an adaptive equalizer technique is used which will successfully follow the fading characteristics of the time-dispersive channel. This paper summarizes an investigation of this tracking problem which led to the selection of a square-root Kalman algorithm to update the coefficients of a decision feedback equalizer (DFE). The design and implementation of a new HF modem utilizing the Kalman DFE in conjunction with a continuous GO BACK N ARQ strategy is described. Results of performance tests at data rates from 2400 to 9600 bps using a 3 kHz real-time HF channel simulator are presented. Both low error rate and high throughput are achieved using the combined adaptive channel equalization and ARQ techniques. Preliminary results from tests over a long-haul live link are also reported.