Gravitational search algorithm with heuristic search for clustering problems

A. Hatamlou, S. Abdullah, Z. Othman
{"title":"Gravitational search algorithm with heuristic search for clustering problems","authors":"A. Hatamlou, S. Abdullah, Z. Othman","doi":"10.1109/DMO.2011.5976526","DOIUrl":null,"url":null,"abstract":"In this paper, we present an efficient algorithm for cluster analysis, which is based on gravitational search and a heuristic search algorithm. In the proposed algorithm, called GSA-HS, the gravitational search algorithm is used to find a near optimal solution for clustering problem, and then at the next step a heuristic search algorithm is applied to improve the initial solution by searching around it. Four benchmark datasets are used to evaluate and to compare the performance of the presented algorithm with two other famous clustering algorithms, i.e. K-means and particle swarm optimization algorithm. The results show that the proposed algorithm can find high quality clusters in all the tested datasets.","PeriodicalId":436393,"journal":{"name":"2011 3rd Conference on Data Mining and Optimization (DMO)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3rd Conference on Data Mining and Optimization (DMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMO.2011.5976526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

In this paper, we present an efficient algorithm for cluster analysis, which is based on gravitational search and a heuristic search algorithm. In the proposed algorithm, called GSA-HS, the gravitational search algorithm is used to find a near optimal solution for clustering problem, and then at the next step a heuristic search algorithm is applied to improve the initial solution by searching around it. Four benchmark datasets are used to evaluate and to compare the performance of the presented algorithm with two other famous clustering algorithms, i.e. K-means and particle swarm optimization algorithm. The results show that the proposed algorithm can find high quality clusters in all the tested datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用引力搜索算法求解启发式聚类问题
本文提出了一种基于引力搜索和启发式搜索的高效聚类分析算法。在GSA-HS算法中,首先使用引力搜索算法寻找聚类问题的近似最优解,然后使用启发式搜索算法对初始解进行周围搜索以改进初始解。使用4个基准数据集对本文算法与另外两种著名的聚类算法(K-means算法和粒子群优化算法)的性能进行评价和比较。结果表明,该算法能在所有测试数据集中找到高质量的聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of various Wiener model identification approach in modelling nonlinear process Data mining technique for expertise search in a special interest group knowledge portal A frequent keyword-set based algorithm for topic modeling and clustering of research papers Optimisation model of selective cutting for Timber Harvest Planning in Peninsular Malaysia Reducing network intrusion detection association rules using Chi-Squared pruning technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1