Compressed sensing for phase unwrapping of interferometric SAR data

T. Aida
{"title":"Compressed sensing for phase unwrapping of interferometric SAR data","authors":"T. Aida","doi":"10.23919/ICCAS.2017.8204366","DOIUrl":null,"url":null,"abstract":"We approach to the problem of wave-front reconstruction via phase unwrapping of interferograms observed by interferometric synthetic aperture radar (SAR), from the viewpoints of Bayesian statistical inference and compressed sensing. For this purpose, we apply sparse representation for compressed sensing to the Bayesian wave-front reconstruction model from SAR interferograms by Saika and Uezu [1]. In the formulation of the problem taking sparse representation into account, the MAP estimate is found to lead to a phase unwrapping algorithm which can be interpreted as a quadratic programming problem. Numerical experiments on an artificial wave-front make it clear that the algorithm effectively removes noise to reconstruct the wave-front, although it suffers from the errors similar to block noise in image processing.","PeriodicalId":140598,"journal":{"name":"2017 17th International Conference on Control, Automation and Systems (ICCAS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 17th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS.2017.8204366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We approach to the problem of wave-front reconstruction via phase unwrapping of interferograms observed by interferometric synthetic aperture radar (SAR), from the viewpoints of Bayesian statistical inference and compressed sensing. For this purpose, we apply sparse representation for compressed sensing to the Bayesian wave-front reconstruction model from SAR interferograms by Saika and Uezu [1]. In the formulation of the problem taking sparse representation into account, the MAP estimate is found to lead to a phase unwrapping algorithm which can be interpreted as a quadratic programming problem. Numerical experiments on an artificial wave-front make it clear that the algorithm effectively removes noise to reconstruct the wave-front, although it suffers from the errors similar to block noise in image processing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
干涉SAR数据相位展开的压缩感知
本文从贝叶斯统计推断和压缩感知的角度,探讨了干涉合成孔径雷达(SAR)观测到的干涉图相位解包裹波前重建问题。为此,Saika和Uezu[1]将压缩感知的稀疏表示应用于SAR干涉图的贝叶斯波前重建模型。在考虑稀疏表示的问题的表述中,发现MAP估计导致一个相位展开算法,该算法可以解释为一个二次规划问题。对人工波前进行的数值实验表明,该算法虽然存在与图像处理中块噪声相似的误差,但能有效地去除噪声重构波前。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of a soft wearable robotic suit on metabolic cost and gait characteristics in healthy young subjects Jumping pattern generation for one-legged jumping robot Radial basis function neural network based PID control for quad-rotor flying robot A study of eye contact for tabletop robot Multi-objective optimal operation with demand management and voltage stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1