A deep learning-based algorithm for three-dimensional dose prediction

Mengjia Xue, Tianrui Liu, Yizhen Xie, Meiya Dong, Xiuping Liu
{"title":"A deep learning-based algorithm for three-dimensional dose prediction","authors":"Mengjia Xue, Tianrui Liu, Yizhen Xie, Meiya Dong, Xiuping Liu","doi":"10.1117/12.2685094","DOIUrl":null,"url":null,"abstract":"Three-dimensional dose prediction is an important step in automatic radiotherapy planning. Using deep learning combined with Knowledge-Based Planning methods (KBP) can achieve dose distribution prediction on CT images. Convolutional Neural Networks (CNN) are an important branch of deep learning algorithms. This article will briefly introduce the application of convolutional neural networks and other advanced algorithm structures in dose prediction. And there are different studies that evaluate the model output results by studying different transformation models, different patient data and data of different treatment methods, and find the optimal dose prediction model. However, the research on dose prediction models is not the most complete. There is still room for further research in terms of input tumor types, treatment methods, etc. Moreover, automatic radiotherapy plan generation is the ultimate goal, and further research is needed.","PeriodicalId":110373,"journal":{"name":"International Conference on Photonics and Imaging in Biology and Medicine","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Photonics and Imaging in Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2685094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Three-dimensional dose prediction is an important step in automatic radiotherapy planning. Using deep learning combined with Knowledge-Based Planning methods (KBP) can achieve dose distribution prediction on CT images. Convolutional Neural Networks (CNN) are an important branch of deep learning algorithms. This article will briefly introduce the application of convolutional neural networks and other advanced algorithm structures in dose prediction. And there are different studies that evaluate the model output results by studying different transformation models, different patient data and data of different treatment methods, and find the optimal dose prediction model. However, the research on dose prediction models is not the most complete. There is still room for further research in terms of input tumor types, treatment methods, etc. Moreover, automatic radiotherapy plan generation is the ultimate goal, and further research is needed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的三维剂量预测算法
三维剂量预测是放射治疗自动规划的重要步骤。将深度学习与知识规划方法(Knowledge-Based Planning methods, KBP)相结合,可以实现CT图像的剂量分布预测。卷积神经网络(CNN)是深度学习算法的一个重要分支。本文将简要介绍卷积神经网络和其他先进的算法结构在剂量预测中的应用。也有不同的研究通过研究不同的转化模型、不同的患者数据和不同治疗方法的数据来评价模型输出结果,找到最优的剂量预测模型。然而,剂量预测模型的研究还不是最完整的。在输入肿瘤类型、治疗方法等方面仍有进一步研究的空间。而放疗计划的自动生成是最终的目标,需要进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Toxicological effect evaluation of arsenic exposure in clam Ruditapes philippinarum by using FLIM Label-free analysis of single microparticles and nanoscale exosomes with two-dimensional light scattering technology Photoacoustic-photothermal visualisation of gastric tissues based on COMSOL Assessment of pilot stress based on functional near-infrared techniques Vessel segmentation and quantification in ultra-wide-field OCTA images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1