Adaptive variable structure tracking control using neural network design

Chiang-Ju Chien, L. Fu
{"title":"Adaptive variable structure tracking control using neural network design","authors":"Chiang-Ju Chien, L. Fu","doi":"10.23919/ECC.1999.7100020","DOIUrl":null,"url":null,"abstract":"This paper presents an adaptive tracking control approach to linear SISO systems, which can solve the traditional model reference adaptive control (MRAC) problems. A new error model is developed for design of an adaptive variable structure controller using only input-output measurements. In this approach, a neural network universal approximator is included to furnish an on-line estimate of a function of the state and some signals relevant to the desired trajectory. It is shown via Lyapunov stability theory that the asymptotic tracking accuracy of the closed-loop system can be arbitrarily improved by decreasing a positive design parameter r, whose inverse characterizes the bandwidth of a so-called averaging filter.","PeriodicalId":117668,"journal":{"name":"1999 European Control Conference (ECC)","volume":"25 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.1999.7100020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents an adaptive tracking control approach to linear SISO systems, which can solve the traditional model reference adaptive control (MRAC) problems. A new error model is developed for design of an adaptive variable structure controller using only input-output measurements. In this approach, a neural network universal approximator is included to furnish an on-line estimate of a function of the state and some signals relevant to the desired trajectory. It is shown via Lyapunov stability theory that the asymptotic tracking accuracy of the closed-loop system can be arbitrarily improved by decreasing a positive design parameter r, whose inverse characterizes the bandwidth of a so-called averaging filter.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用神经网络设计的自适应变结构跟踪控制
提出了一种线性SISO系统的自适应跟踪控制方法,解决了传统的模型参考自适应控制(MRAC)问题。建立了一种新的误差模型,用于设计仅使用输入输出测量的自适应变结构控制器。在该方法中,使用神经网络通用逼近器对状态函数和与期望轨迹相关的一些信号进行在线估计。通过李雅普诺夫稳定性理论表明,通过减小一个正设计参数r可以任意提高闭环系统的渐近跟踪精度,其逆表征了所谓的平均滤波器的带宽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A non-conservative approach to set membership identification for control Approximating uncertainty representations using the v-GAP metric Fault-tolerant control of a ship propulsion system using model predictive control Closed-loop identification using canonical correlation analysis Subspace-based identification of MIMO bilinear systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1