Elementary Function Implementation with Optimized Sub Range Polynomial Evaluation

M. Langhammer, B. Pasca
{"title":"Elementary Function Implementation with Optimized Sub Range Polynomial Evaluation","authors":"M. Langhammer, B. Pasca","doi":"10.1109/FCCM.2013.30","DOIUrl":null,"url":null,"abstract":"Efficient elementary function implementations require primitives optimized for modern FPGAs. Fixed-point function generators are one such type of primitives. When built around piecewise polynomial approximations they make use of memory blocks and embedded multipliers, mapping well to contemporary FPGAs. Another type of primitive which can exploit the power series expansions of some elementary functions is floating-point polynomial evaluation. The high costs traditionally associated with floating-point arithmetic made this primitive unattractive for elementary function implementation on FPGAs. In this work we present a novel and efficient way of implementing floating-point polynomial evaluators on a restricted input range. We show on the atan(x) function in double precision that this very different technique reduces memory block count by up to 50% while only slightly increasing DSP count compared to the best implementation built around polynomial approximation fixed-point primitives.","PeriodicalId":269887,"journal":{"name":"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2013.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Efficient elementary function implementations require primitives optimized for modern FPGAs. Fixed-point function generators are one such type of primitives. When built around piecewise polynomial approximations they make use of memory blocks and embedded multipliers, mapping well to contemporary FPGAs. Another type of primitive which can exploit the power series expansions of some elementary functions is floating-point polynomial evaluation. The high costs traditionally associated with floating-point arithmetic made this primitive unattractive for elementary function implementation on FPGAs. In this work we present a novel and efficient way of implementing floating-point polynomial evaluators on a restricted input range. We show on the atan(x) function in double precision that this very different technique reduces memory block count by up to 50% while only slightly increasing DSP count compared to the best implementation built around polynomial approximation fixed-point primitives.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化子范围多项式求值的初等函数实现
高效的初等函数实现需要针对现代fpga优化的原语。定点函数生成器就是这样一种原语。当围绕分段多项式近似构建时,它们利用内存块和嵌入式乘数器,很好地映射到当代fpga。另一类可以利用某些初等函数幂级数展开的原语是浮点多项式求值。传统上与浮点运算相关的高成本使得这种原语对于fpga上的基本函数实现没有吸引力。在这项工作中,我们提出了一种在有限输入范围内实现浮点多项式求值器的新颖而有效的方法。我们在双精度的atan(x)函数中显示,与围绕多项式近似定点原语构建的最佳实现相比,这种非常不同的技术可减少高达50%的内存块计数,同时仅略微增加DSP计数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Escaping the Academic Sandbox: Realizing VPR Circuits on Xilinx Devices Exploiting Input Parameter Uncertainty for Reducing Datapath Precision of SPICE Device Models Accurate Thermal-Profile Estimation and Validation for FPGA-Mapped Circuits Boosting Memory Performance of Many-Core FPGA Device through Dynamic Precedence Graph A Fast and Accurate FPGA-Based Fault Injection System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1