Relation Specific Transformations for Open World Knowledge Graph Completion

Haseeb Shah, Johannes Villmow, A. Ulges
{"title":"Relation Specific Transformations for Open World Knowledge Graph Completion","authors":"Haseeb Shah, Johannes Villmow, A. Ulges","doi":"10.18653/v1/2020.textgraphs-1.9","DOIUrl":null,"url":null,"abstract":"We propose an open-world knowledge graph completion model that can be combined with common closed-world approaches (such as ComplEx) and enhance them to exploit text-based representations for entities unseen in training. Our model learns relation-specific transformation functions from text-based to graph-based embedding space, where the closed-world link prediction model can be applied. We demonstrate state-of-the-art results on common open-world benchmarks and show that our approach benefits from relation-specific transformation functions (RST), giving substantial improvements over a relation-agnostic approach.","PeriodicalId":282839,"journal":{"name":"Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.textgraphs-1.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We propose an open-world knowledge graph completion model that can be combined with common closed-world approaches (such as ComplEx) and enhance them to exploit text-based representations for entities unseen in training. Our model learns relation-specific transformation functions from text-based to graph-based embedding space, where the closed-world link prediction model can be applied. We demonstrate state-of-the-art results on common open-world benchmarks and show that our approach benefits from relation-specific transformation functions (RST), giving substantial improvements over a relation-agnostic approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向开放世界知识图谱补全的关系特定转换
我们提出了一个开放世界知识图谱完成模型,该模型可以与常见的封闭世界方法(如ComplEx)相结合,并对它们进行增强,以利用基于文本的表示来处理训练中未见过的实体。我们的模型学习了从基于文本到基于图的嵌入空间的特定于关系的转换函数,其中可以应用闭世界链接预测模型。我们在常见的开放世界基准上展示了最先进的结果,并表明我们的方法受益于特定于关系的转换函数(RST),与关系无关的方法相比有了实质性的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A survey of embedding models of entities and relationships for knowledge graph completion Explanation Regeneration via Multi-Hop ILP Inference over Knowledge Base Graph-based Aspect Representation Learning for Entity Resolution TextGraphs 2020 Shared Task on Multi-Hop Inference for Explanation Regeneration Merge and Recognize: A Geometry and 2D Context Aware Graph Model for Named Entity Recognition from Visual Documents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1