Gasification of High and Low Density Crop Residues

A. Parihar, V. B. Kulkarni, G. Sridhar
{"title":"Gasification of High and Low Density Crop Residues","authors":"A. Parihar, V. B. Kulkarni, G. Sridhar","doi":"10.6000/1929-6002.2013.02.04.8","DOIUrl":null,"url":null,"abstract":"Crop residue constitutes a large fraction of biomass particularly in agricultural based economies like India. The most abundantly generated crop residues are paddy husk, paddy straw, coconut shell, cotton stalk and sugar cane trash. It is estimated that the potential of power generation using crop residue is close to 14 GWe in a country like India. Even though the potential is large, the main drawback with crop residue is that it is sparsely distributed and being of low density causes collection and transportation problem. This drawback could be converted into an advantage by adopting distributed power generation technologies. The distributed power generation would fare well in the power range of few hundred kilowatts and the most appropriate technology would be the biomass gasification technology. Among the biomass gasification technologies, the downdraft technology is ideally suited for power generation. The downdraft technology is proven with solid or woody biomass, whereas there are limitations in terms of acceptance of all types of crop residues. In this paper, performance study of two vastly differing crop residues, namely coconut shell and cotton stalk has been discussed; both the feedstocks have been tested in “post-harvested” condition with minimum amount of pre-processing. The performance with cotton stalk was found to be comparable at part load; however at higher load the gas composition deteriorated due to poor material movement within the reactor. This had implication in terms of maximum power generated. There was loss of power to an extent of 12%. The operational issues with post-harvested cotton stalk has been brought out which are based on detailed measurements.","PeriodicalId":394478,"journal":{"name":"Journal of Technology Innovations in Renewable Energy","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Technology Innovations in Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6000/1929-6002.2013.02.04.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Crop residue constitutes a large fraction of biomass particularly in agricultural based economies like India. The most abundantly generated crop residues are paddy husk, paddy straw, coconut shell, cotton stalk and sugar cane trash. It is estimated that the potential of power generation using crop residue is close to 14 GWe in a country like India. Even though the potential is large, the main drawback with crop residue is that it is sparsely distributed and being of low density causes collection and transportation problem. This drawback could be converted into an advantage by adopting distributed power generation technologies. The distributed power generation would fare well in the power range of few hundred kilowatts and the most appropriate technology would be the biomass gasification technology. Among the biomass gasification technologies, the downdraft technology is ideally suited for power generation. The downdraft technology is proven with solid or woody biomass, whereas there are limitations in terms of acceptance of all types of crop residues. In this paper, performance study of two vastly differing crop residues, namely coconut shell and cotton stalk has been discussed; both the feedstocks have been tested in “post-harvested” condition with minimum amount of pre-processing. The performance with cotton stalk was found to be comparable at part load; however at higher load the gas composition deteriorated due to poor material movement within the reactor. This had implication in terms of maximum power generated. There was loss of power to an extent of 12%. The operational issues with post-harvested cotton stalk has been brought out which are based on detailed measurements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高、低密度作物残茬的气化
农作物残渣构成了生物质的很大一部分,特别是在像印度这样的农业经济中。产生最多的农作物秸秆是稻壳、稻秆、椰子壳、棉秆和甘蔗垃圾。据估计,在印度这样的国家,利用农作物秸秆发电的潜力接近14吉瓦。尽管潜力很大,但作物秸秆的主要缺点是分布稀疏,密度低,导致收集和运输问题。通过采用分布式发电技术,这一缺点可以转化为优势。分布式发电在几百千瓦的功率范围内表现良好,最合适的技术是生物质气化技术。在生物质气化技术中,下吸式技术最适合于发电。下沉气流技术已被证明适用于固体或木质生物质,但在接受所有类型的作物残留物方面存在局限性。本文讨论了椰子壳和棉花秸秆两种差异很大的作物秸秆的性能研究;这两种原料都在€œpost-harvested—条件下进行了测试,预处理量最少。在部分负荷下,与棉秆的性能相当;然而,在高负荷时,由于反应器内物料移动不良,气体成分恶化。这对产生的最大功率有影响。电力损失达到了12%。在详细测量的基础上,提出了采后棉秆的操作问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of Technological Surveillance in Electric River Mobility for Cargo Transport on the Atrato River, Colombia Study of Technological Surveillance in Electric River Mobility for Cargo Transport on the Atrato River, Colombia A Comparative Study on the Renewable Energy Related Curriculums in the Universities in Guangdong- Hong Kong- Macao Greater Bay Area Numerical Modeling Prediction of Thermal Storage during Discharging Phase, PV- Thermal Solar and with Nanofluids Bathocuproine Buffer Layer Effect on the Performance of Inverted Perovskite Solar Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1