Chaitanya K. Mididoddi, Guoqing Wang, U. Habib, Hongxia Zhang, Chao Wang
{"title":"Ultrafast User Localization and Beam Steering in Optical Wireless Communication Using an In-Fibre Diffraction Grating","authors":"Chaitanya K. Mididoddi, Guoqing Wang, U. Habib, Hongxia Zhang, Chao Wang","doi":"10.1109/MWP.2018.8552858","DOIUrl":null,"url":null,"abstract":"Wavelength-controlled laser beam steering has been successfully demonstrated for indoor optical wireless communications (OWC). Here we demonstrate ultrafast user localization (50 million scans per second) in OWC based on real-time wavelength monitoring. A separate time stretched pulsed laser source is introduced to implement ultrafast optical wavelength (hence optical beam) scanning. A dispersion unbalanced Mach-Zehnder interferometric configuration creates chirped encoding in stretch optical pulses. The reflected optical wavelength from a remote user carrying the location information of the user is detected by real-time instantaneous microwave frequency detection. This new approach facilitates simultaneous ultrafast user localization and data transmission at communication C-band. A proof-of-concept experiment is carried out to verify the proposed approach.","PeriodicalId":146799,"journal":{"name":"2018 International Topical Meeting on Microwave Photonics (MWP)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Topical Meeting on Microwave Photonics (MWP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWP.2018.8552858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Wavelength-controlled laser beam steering has been successfully demonstrated for indoor optical wireless communications (OWC). Here we demonstrate ultrafast user localization (50 million scans per second) in OWC based on real-time wavelength monitoring. A separate time stretched pulsed laser source is introduced to implement ultrafast optical wavelength (hence optical beam) scanning. A dispersion unbalanced Mach-Zehnder interferometric configuration creates chirped encoding in stretch optical pulses. The reflected optical wavelength from a remote user carrying the location information of the user is detected by real-time instantaneous microwave frequency detection. This new approach facilitates simultaneous ultrafast user localization and data transmission at communication C-band. A proof-of-concept experiment is carried out to verify the proposed approach.