RedMulE: A Compact FP16 Matrix-Multiplication Accelerator for Adaptive Deep Learning on RISC-V-Based Ultra-Low-Power SoCs

Yvan Tortorella, L. Bertaccini, D. Rossi, L. Benini, Francesco Conti
{"title":"RedMulE: A Compact FP16 Matrix-Multiplication Accelerator for Adaptive Deep Learning on RISC-V-Based Ultra-Low-Power SoCs","authors":"Yvan Tortorella, L. Bertaccini, D. Rossi, L. Benini, Francesco Conti","doi":"10.48550/arXiv.2204.11192","DOIUrl":null,"url":null,"abstract":"The fast proliferation of extreme-edge applications using Deep Learning (DL) based algorithms required dedicated hardware to satisfy extreme-edge applications' latency, through-put, and precision requirements. While inference is achievable in practical cases, online finetuning and adaptation of general DL models are still highly challenging. One of the key stumbling stones is the need for parallel floating-point operations, which are considered unaffordable on sub-100 mW extreme-edge SoCs. We tackle this problem with RedMulE (Reduced-precision ma-trix Multiplication Engine), a parametric low-power hardware accelerator for FP16 matrix multiplications - the main kernel of DL training and inference - conceived for tight integration within a cluster of tiny RISC- V cores based on the PULP (Parallel Ultra-Low-Power) architecture. In 22 nm technology, a 32-FMA RedMulE instance occupies just 0.07mm2(14% of an 8-core RISC- V cluster) and achieves up to 666 MHz maximum operating frequency, for a throughput of 31.6 MAC/cycle (98.8% utilization). We reach a cluster-level power consumption of 43.5 mW and a full-cluster energy efficiency of 688 16-bit GFLOPS/W. Overall, RedMulE features up to 4.65 x higher energy efficiency and 22 x speedup over SW execution on 8 RISC- V cores.","PeriodicalId":232583,"journal":{"name":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.11192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The fast proliferation of extreme-edge applications using Deep Learning (DL) based algorithms required dedicated hardware to satisfy extreme-edge applications' latency, through-put, and precision requirements. While inference is achievable in practical cases, online finetuning and adaptation of general DL models are still highly challenging. One of the key stumbling stones is the need for parallel floating-point operations, which are considered unaffordable on sub-100 mW extreme-edge SoCs. We tackle this problem with RedMulE (Reduced-precision ma-trix Multiplication Engine), a parametric low-power hardware accelerator for FP16 matrix multiplications - the main kernel of DL training and inference - conceived for tight integration within a cluster of tiny RISC- V cores based on the PULP (Parallel Ultra-Low-Power) architecture. In 22 nm technology, a 32-FMA RedMulE instance occupies just 0.07mm2(14% of an 8-core RISC- V cluster) and achieves up to 666 MHz maximum operating frequency, for a throughput of 31.6 MAC/cycle (98.8% utilization). We reach a cluster-level power consumption of 43.5 mW and a full-cluster energy efficiency of 688 16-bit GFLOPS/W. Overall, RedMulE features up to 4.65 x higher energy efficiency and 22 x speedup over SW execution on 8 RISC- V cores.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RedMulE:用于基于risc - v的超低功耗soc的自适应深度学习的紧凑型FP16矩阵乘法加速器
使用基于深度学习(DL)算法的极端边缘应用程序的快速扩散需要专用硬件来满足极端边缘应用程序的延迟、吞吐量和精度要求。虽然在实际情况下可以实现推理,但一般深度学习模型的在线微调和自适应仍然具有很高的挑战性。其中一个关键的绊脚石是对并行浮点运算的需求,这在低于100兆瓦的极端边缘soc上被认为是负担不起的。我们用RedMulE(降低精度矩阵乘法引擎)解决了这个问题,RedMulE是一个参数化的低功耗硬件加速器,用于FP16矩阵乘法——DL训练和推理的主要内核——设计用于基于PULP(并行超低功耗)架构的微型RISC- V内核集群内的紧密集成。在22纳米技术中,一个32-FMA的RedMulE实例仅占用0.07mm2(8核RISC- V集群的14%),最高工作频率高达666 MHz,吞吐量为31.6 MAC/周期(利用率为98.8%)。我们达到了43.5 mW的集群级功耗和688 16位GFLOPS/W的全集群能效。总体而言,RedMulE在8个RISC- V内核上的能效提高了4.65倍,速度提高了22倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DIET: A Dynamic Energy Management Approach for Wearable Health Monitoring Devices NPU-Accelerated Imitation Learning for Thermal- and QoS-Aware Optimization of Heterogeneous Multi-Cores A Precision-Scalable Energy-Efficient Bit-Split-and-Combination Vector Systolic Accelerator for NAS-Optimized DNNs on Edge coxHE: A software-hardware co-design framework for FPGA acceleration of homomorphic computation HELCFL: High-Efficiency and Low-Cost Federated Learning in Heterogeneous Mobile-Edge Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1