Spectral histogram representations for visual modeling

Xiuwen Liu, Qiang Zhang
{"title":"Spectral histogram representations for visual modeling","authors":"Xiuwen Liu, Qiang Zhang","doi":"10.1109/AIPR.2003.1284272","DOIUrl":null,"url":null,"abstract":"We present spectral histogram representations for visual modeling. Based on a generative process, the representation is derived by partitioning the frequency domain into small disjoint regions and assuming independence among the regions. This gives rise to a set of filters and a representation consisting of marginal distributions of those filter responses. A distinct advantage of our representation is that it can be effectively used for different classification and recognition tasks, which is demonstrated by experiments and comparisons in texture classification, face recognition, and appearance-based 3D object recognition. The marked improvement over existing methods justifies our principle that effective priori knowledge should be derived from physical generative processes.","PeriodicalId":176987,"journal":{"name":"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2003.1284272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present spectral histogram representations for visual modeling. Based on a generative process, the representation is derived by partitioning the frequency domain into small disjoint regions and assuming independence among the regions. This gives rise to a set of filters and a representation consisting of marginal distributions of those filter responses. A distinct advantage of our representation is that it can be effectively used for different classification and recognition tasks, which is demonstrated by experiments and comparisons in texture classification, face recognition, and appearance-based 3D object recognition. The marked improvement over existing methods justifies our principle that effective priori knowledge should be derived from physical generative processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于可视化建模的光谱直方图表示
我们提出了用于可视化建模的光谱直方图表示。基于生成过程,通过将频域划分为小的不相交区域并假设区域之间的独立性来导出表示。这就产生了一组滤波器和由这些滤波器响应的边际分布组成的表示。通过纹理分类、人脸识别和基于外观的3D物体识别的实验和比较,我们的表征方法的一个明显优势是可以有效地用于不同的分类和识别任务。对现有方法的显著改进证明了我们的原则,即有效的先验知识应该来自物理生成过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum image processing (QuIP) Dual band (MWIR/LWIR) hyperspectral imager Fusion techniques for automatic target recognition Perspectives on the fusion of image and non-image data Eigenviews for object recognition in multispectral imaging systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1