Deep Unsupervised Learning for Condition Monitoring and Prediction of High Dimensional Data with Application on Windfarm SCADA Data

Charilaos Mylonas, I. Abdallah, E. Chatzi
{"title":"Deep Unsupervised Learning for Condition Monitoring and Prediction of High Dimensional Data with Application on Windfarm SCADA Data","authors":"Charilaos Mylonas, I. Abdallah, E. Chatzi","doi":"10.3929/ETHZ-B-000315814","DOIUrl":null,"url":null,"abstract":"In this work we are addressing the problem of statistical modeling of the joint distribution of data collected from wind turbines interacting due to collective effect of their placement in a wind-farm, the wind characteristics (speed/orientation) and the turbine control. Operating wind turbines extract energy from the wind and at the same time produce wakes on the down-wind turbines in a park, causing reduced power production and increased vibrations, potentially contributing in a detrimental manner to fatigue life. This work presents a Variational Auto-Encoder (VAE) Neural Network architecture capable of mapping the high dimensional correlated stochastic variables over the wind-farm, such as power production and wind speed, to a parametric probability distribution of much lower dimensionality. We demonstrate how a trained VAE can be used in order to quantify levels of statistical deviation on condition monitoring data. Moreover, we demonstrate how the VAE can be used for pre-training an inference model, capable of predicting the power production of the farm together with bounds on the uncertainty of the predictions.","PeriodicalId":278140,"journal":{"name":"Model Validation and Uncertainty Quantification, Volume 3","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Model Validation and Uncertainty Quantification, Volume 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3929/ETHZ-B-000315814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this work we are addressing the problem of statistical modeling of the joint distribution of data collected from wind turbines interacting due to collective effect of their placement in a wind-farm, the wind characteristics (speed/orientation) and the turbine control. Operating wind turbines extract energy from the wind and at the same time produce wakes on the down-wind turbines in a park, causing reduced power production and increased vibrations, potentially contributing in a detrimental manner to fatigue life. This work presents a Variational Auto-Encoder (VAE) Neural Network architecture capable of mapping the high dimensional correlated stochastic variables over the wind-farm, such as power production and wind speed, to a parametric probability distribution of much lower dimensionality. We demonstrate how a trained VAE can be used in order to quantify levels of statistical deviation on condition monitoring data. Moreover, we demonstrate how the VAE can be used for pre-training an inference model, capable of predicting the power production of the farm together with bounds on the uncertainty of the predictions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度无监督学习的高维数据状态监测与预测及其在风电场SCADA数据中的应用
在这项工作中,我们正在解决从风力涡轮机收集的数据联合分布的统计建模问题,这些数据是由于风力涡轮机在风电场中的放置、风力特性(速度/方向)和涡轮机控制的集体效应而相互作用的。运行中的风力涡轮机从风中提取能量,同时在公园的顺风涡轮机上产生尾迹,导致发电量减少,振动增加,可能对疲劳寿命造成不利影响。这项工作提出了一个变分自编码器(VAE)神经网络架构,能够将风电场上的高维相关随机变量(如发电量和风速)映射到低维的参数概率分布。我们演示了如何使用经过训练的VAE来量化状态监测数据的统计偏差水平。此外,我们还演示了VAE如何用于预训练推理模型,该模型能够预测农场的发电量以及预测的不确定性的界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Equation Discovery Using an Efficient Variational Bayesian Approach with Spike-and-Slab Priors An Initial Concept for an Error-Based Digital Twin Framework for Dynamics Applications Virtual Sensing for Wind Turbine Blade Full Field Response Estimation in Operational Modal Analysis A Forward Model Driven Structural Health Monitoring Paradigm: Damage Detection Application of Speaker Recognition x-Vectors to Structural Health Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1